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Abstract: A robot making or losing contact with its environment will experience a sudden
change in its dynamics. This may cause instability, possibly causing the robot to harm itself
and its environment. To prevent this while not placing overly restrictive constraints on the energy
generated by the controller, we place a time-varying constraint on the system’s power. The power
limit varies with a heuristic measure of a desired task trajectory’s stability, which is based on
the largest Lyapunov exponent. When the trajectory is deemed unstable, the controller is forced
to dissipate energy, while it is allowed to generate energy when the trajectory is stable. The
constraint is included in a strict task-priority framework, allowing a redundant robotic platform
to perform several tasks simultaneously while ensuring that the performance of the higher-
priority tasks is not affected by the lower-priority tasks. The presented method is validated by
simulation of an articulated intervention autonomous underwater vehicle (AIAUV).
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1. INTRODUCTION

This paper is motivated by the field of underwater vehicle-
manipulator systems (UVMSs). These robots can perform
various tasks related to underwater inspection, mainte-
nance and repair (IMR), thus dramatically decreasing
the risk to human life compared to having human divers
perform the same operations. Today, the majority of un-
derwater IMR tasks are performed by either human divers
or remotely operated vehicles (ROVs) supported by large
surface vessels. These vessels are currently the main con-
tributor to both the environmental impact and the cost of
IMR operations (Liljebäck and Mills, 2017), so by making
the UVMSs autonomous, the operations become greener,
safer and cheaper.

One particularly interesting group of UVMSs in this regard
is articulated intervention autonomous underwater vehi-
cles (AIAUVs), see Fig. 1. AIAUVs are UVMSs with both
the hovering and intervention capabilities of classic ROVs,
as well as the favorable hydrodynamics of survey AUVs,
making them well suited for IMR tasks. In this paper, we
will focus on operations that require physical interaction
with the environment, such as maintenance and reparation
tasks.

When a robot goes in and out of contact with its envi-
ronment, the dynamics of the controlled system, i.e. the
robot, changes. This change in dynamics may lead to
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Fig. 1. The Eelume AIAUV performing an inspection task.

instability, which again may cause harm to both the robot
and its surroundings. To avoid this, a popular strategy is
to design the controller such that the relationship between
the generalized error velocities and the generalized control
force is passive.

As the feedback connection of two passive systems is pas-
sive, and, under certain observability conditions, asymp-
totically stable (Khalil, 2002, Thms. 6.1&6.3), designing
the controller to render the closed-loop system passive en-
sures the (asymptotic) stability of the closed-loop system
if the environment is also passive. In fact, it can be shown
that any non-passive robot can be destabilized by a passive
environment (Stramigioli, 2015).

Some tasks, however, may require more control effort than
passivity typically allows. To circumvent this problem,
one may introduce so-called virtual energy tanks. These
are virtual reservoirs of pre-allocated energy that can be
used to execute tasks that would otherwise be impossible
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1. INTRODUCTION

This paper is motivated by the field of underwater vehicle-
manipulator systems (UVMSs). These robots can perform
various tasks related to underwater inspection, mainte-
nance and repair (IMR), thus dramatically decreasing
the risk to human life compared to having human divers
perform the same operations. Today, the majority of un-
derwater IMR tasks are performed by either human divers
or remotely operated vehicles (ROVs) supported by large
surface vessels. These vessels are currently the main con-
tributor to both the environmental impact and the cost of
IMR operations (Liljebäck and Mills, 2017), so by making
the UVMSs autonomous, the operations become greener,
safer and cheaper.

One particularly interesting group of UVMSs in this regard
is articulated intervention autonomous underwater vehi-
cles (AIAUVs), see Fig. 1. AIAUVs are UVMSs with both
the hovering and intervention capabilities of classic ROVs,
as well as the favorable hydrodynamics of survey AUVs,
making them well suited for IMR tasks. In this paper, we
will focus on operations that require physical interaction
with the environment, such as maintenance and reparation
tasks.

When a robot goes in and out of contact with its envi-
ronment, the dynamics of the controlled system, i.e. the
robot, changes. This change in dynamics may lead to

⋆ This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program, through the ERC Advanced Grant
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Fig. 1. The Eelume AIAUV performing an inspection task.

instability, which again may cause harm to both the robot
and its surroundings. To avoid this, a popular strategy is
to design the controller such that the relationship between
the generalized error velocities and the generalized control
force is passive.

As the feedback connection of two passive systems is pas-
sive, and, under certain observability conditions, asymp-
totically stable (Khalil, 2002, Thms. 6.1&6.3), designing
the controller to render the closed-loop system passive en-
sures the (asymptotic) stability of the closed-loop system
if the environment is also passive. In fact, it can be shown
that any non-passive robot can be destabilized by a passive
environment (Stramigioli, 2015).

Some tasks, however, may require more control effort than
passivity typically allows. To circumvent this problem,
one may introduce so-called virtual energy tanks. These
are virtual reservoirs of pre-allocated energy that can be
used to execute tasks that would otherwise be impossible

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)



348	 Erling Tveter  et al. / IFAC PapersOnLine 58-20 (2024) 347–353

to accomplish without violating the passivity constraint.
These reservoirs can also be refilled with the energy
dissipated by the system without violating passivity. A
downside of this approach is that one needs an “energy
budget” - an estimate of how much energy is needed to
accomplish a task. If the estimate is too low, the task will
be interrupted prematurely, whereas a too-large energy
budget no longer ensures safety. One solution is to only fill
the energy tanks with the least amount of initial energy
needed to fulfill the task (Schindlbeck and Haddadin,
2015), but as pointed out in e.g. Benzi et al. (2022), this is
insufficient for systems with time-varying environmental
dynamics. In Shahriari et al. (2018), valve-based virtual
energy tanks were introduced to enable constraints on the
power, as energy tanks in themselves do not constrain how
fast the energy can be used, which may lead to unsafe
behavior. The energy tank approach was abandoned in
Cuniato et al. (2022), where it was proposed to instead
use only a constraint on the produced power. A large
benefit of this method is that it removes the need for an
energy budget, and the approach proposed in this paper
will therefore build on Cuniato et al. (2022) to handle the
interaction forces.

Vehicle-manipulator systems (VMSs) are in general redun-
dant with respect to payload pose tasks, as they have a mo-
bile base and a manipulator arm. The control framework
therefore needs to handle this redundancy in tandem with
the interaction. One way of doing redundancy resolution
is through task-priority schemes.

Task-priority schemes are typically based on either null-
space projections (Hanafusa et al., 1981; Siciliano and
Slotine, 1991) or optimization (Kanoun et al., 2011). The
null-space projection-based methods achieve strict task
priority, meaning that the higher-priority tasks’ perfor-
mances are unaffected by the lower-priority tasks. Usu-
ally, however, these schemes cannot incorporate inequality
tasks, such as safety-critical tasks like respecting joint
limits and avoiding obstacles, though the introduction of
activation functions (Simetti et al., 2014, 2018; Cieślak
and Ridao, 2018) and tangent cones (Moe et al., 2016)
allows the inclusion of scalar inequality tasks. Conversely,
optimization-based methods can handle inequality tasks,
but typically only achieve soft task priority, meaning that
the higher-priority tasks’ performances are prioritized over
the lower-priority tasks, but not necessarily unaffected by
them. There are, however, optimization-based frameworks,
like Kanoun et al. (2011), that achieve strict task priority
as well.

While the null-space projection-based methods presented
in Dietrich and Ott (2020); Garofalo and Ott (2020) have
recently been extended to (U)VMSs (Sæbø et al., 2022;
Dyrhaug et al., 2023), few optimization-based solutions
have been explored for these platforms. One optimization-
based task-priority framework that has been explored,
however, is the one proposed in Basso and Pettersen
(2020). This framework allows for strict priority between
an arbitrary number of priority levels, and soft priority
between the tasks within each level. As the framework is
based on optimization, it can also handle inequality tasks.
However, no tasks handling the stability issues stemming
from interaction with the environment, e.g. a task ensuring
passivity, were included in the paper.

Passivity in task-priority schemes has been a topic of
interest for the last few years. As null-space projections
violate passivity (Dietrich et al., 2016), energy tank-based
solutions have been proposed in Dietrich et al. (2016,
2017); Michel et al. (2020, 2022). In Michel et al. (2022),
power-based constraints are also introduced. All these
methods are, however, still reliant on energy tanks, and
thus on energy budgets, and do not allow inequality tasks.

In this paper, we present an approach to handle the redun-
dancy in tandem with the interaction for redundant robot
manipulators, like UVMSs. To handle the interaction, a
constraint inspired by Cuniato et al. (2022) is placed on the
produced power with respect to the top non-safety-critical
tasks in the task hierarchy. Contrary to Cuniato et al.
(2022), however, the constraint is not placed as a “safety-
layer” on top of an existing controller, but is instead incor-
porated in the task-priority framework proposed in Basso
and Pettersen (2020), thus keeping the advantageous strict
hierarchy between tasks. The proposed method is vali-
dated through a simulation of an AIAUV, and the results
are compared to those of the same controller without the
power constraint in place.

The paper is organized as follows: In Section 2, the
mathematical model of the dynamical system assumed in
this paper, along with the specific model for a UVMS, is
presented. The task-priority framework, along with some
required background material, is presented in Section 3,
before the proposed power constraint and how it changes
with the observed stability of the system is presented in
Section 4. The simulation results validating the proposed
method are presented in Section 5, and finally, in Section
6, conclusions and future work are presented.

2. MODEL

In this section, the general model assumed for the control
system is presented first, before the specific model for
UVMSs, the class of robots that inspired this paper, is
presented.

2.1 General model

The control system is assumed to be nonlinear and control
affine, i.e. of the form

ẋ = f(x) + g(x)u, (1)

where x ∈ D ⊂ Rp are the controlled states, u ∈ U ⊂ Rr is
the control input, and f and g are locally Lipschitz. With

y = σ(x)− σd(x) (2)

denoting the error of some equality task σ : Rp → Rm, the
input-output dynamics become

y(ρ) = Lρ
fy(x)︸ ︷︷ ︸
b(x)

+LgL
ρ−1
f y(x)︸ ︷︷ ︸
A(x)

u (3)

with ρ ∈ N the relative degree of the system (1)-(2), if

LgL
k
fy = 0 for 0 ≤ k ≤ ρ− 2 and LgL

ρ−1
f y ̸= 0. Note that

we will slightly abuse notation throughout this paper, and
denote

Lgh(x) =
∂h(x)

∂x
g(x)

for the sake of compactness.

The system (1) can be decomposed into the external
dynamics, with state η = [yT , ẏT , . . . , y(ρ−1)T ]T ∈ X ⊂

Rρm and the internal dynamics, with state z ∈ Z ⊂
Rp−ρm:

η̇ = f̄(η, z) + ḡ(η, z)u (4a)

ż = fz(η, z). (4b)

Here, f̄(η, z) = Fη +Gb(x) and ḡ(η, z) = GA(x), where

F =




0 I 0 . . . 0
0 0 I . . . 0
...
...
...
. . .

...
0 0 0 . . . I
0 0 0 . . . 0



, G =




0
0
0
...
I



, (5)

with 0 being the m × m zero matrix and I the m × m
identity matrix.

2.2 UVMS model

The dynamic model of a UVMS with n joints (From et al.,
2014, Chap. 8.2) is rewritten to fit the control affine form
of (1) with x = [xT

1 , x
T
2 ]

T :

f(x) =


Ja(x1)x2

−M(x1)
−1 (C(x)x2 +D(x)x2 + g(x1)− τe)


,

(6a)

g(x) =


0

M(x1)
−1B(x1)


(6b)

where x1 = [pT , qT , θT ]T ∈ R7+n, with p ∈ R3 being
the position of the base in the inertial frame, q ∈ R4 a
unit quaternion describing the orientation of the base and
θ ∈ Rn the joint angles, and x2 = [vT , ωT , θ̇T ]T ∈ R6+n,
with v, ω ∈ R3 describing the linear and angular velocity
of the base, respectively, and θ̇ the joint angle velocities.
Furthermore, M is the inertia matrix, C the Coriolis
and centripetal force matrix, D the damping matrix, g
the gravitational and buoyancy forces, τe the external
generalized forces, B the actuator configuration matrix
and Ja is the Jacobian transforming body-fixed velocities
x2 to velocities in the inertial frame ẋ1.

3. TASK-PRIORITY FRAMEWORK

In this section, we give an introduction to the task-priority
framework (Basso and Pettersen, 2020) that we will utilize
in this paper, along with some necessary background
material.

3.1 Background material

Control Lyapunov functions A control Lyapunov func-
tion (CLF) for the control affine system (1) is a positive
definite function V (x) that satisfies

inf
u∈U

[LfV (x) + LgV (x)u] < −β(V (x)),

where β is a class K function. In Ames et al. (2014), a
specific CLF type was introduced to explicitly control the
exponential convergence rate through a parameter ϵ:

Definition 1. A continuously differentiable function Vϵ :
X → R is a rapidly exponentially stabilizing control
Lyapunov function (RES-CLF) for the system (4) if there
exist constants a1, a2, a3 > 0 such that for all 0 < ϵ < 1
and for all (η, z) ∈ X × Z

a1∥η∥2 ≤ Vϵ(η) ≤
a2
ϵ2

∥η∥2, (7)

inf
u∈U

[Lf̄Vϵ(η, z) + LḡVϵ(η, z)u] ≤ −a3
ϵ
Vϵ(η). (8)

A RES-CLF can be constructed by first solving the
continuous-time Riccati equation and then define

Vϵ(η) = ηT

1
ϵ I 0
0 I


P


1
ϵ I 0
0 I


η := ηTPϵη, (9)

where P is the solution of the Riccati equation.

Control barrier functions A control barrier function
(CBF) is used to render a set C := {x ∈ D : h(x) ≥ 0} of
the state space forward invariant, meaning that for every
x0 ∈ C, x(t) ∈ C, with x0 = x(t0), and t ∈ [t0,∞). The
standard definition of a CBF, however, assumes that the
constraint h(x) ≥ 0 has a relative degree of one, i.e. that ḣ
depends on the control input u. For robotic systems, this
is often not the case, as the set we want to render forward
invariant typically is related to the robot pose, while the
control input usually is a generalized force coming in at
the acceleration level.

In the exponential CBF (ECBF) formalism, however, h(x)
may have an arbitrarily high relative degree r > 1,
meaning

h(r)(x, u) = Lr
fh(x) + LgL

r−1
f h(x)u

with LgL
r−1
f h(x) ̸= 0 and LgL

k
fh(x) = 0 for 1 ≤ k ≤ r −

2. Defining ηb(x) := [hT (x), ḣT (x), . . . , h(r−1)T (x)]T , the
dynamics of h can then be written as a linear system, and
the ECBF can be defined as follows (Ames et al., 2019):

Definition 2. Given a set C ⊂ D ⊂ Rp defined as the
superlevel set of an r-times continuously differentiable
function h : D → R, the function h is an exponential
control barrier function (ECBF) if there exists a row vector
Kα ∈ Rr such that for the control affine system (1) and
∀x ∈ Int(C)

sup
u∈U

[Lr
fh(x) + LgL

r−1
f h(x)u] ≥ −Kαηb(x). (10)

Combining CLFs and ECBFs As both the RES-CLF (8)
and the ECBF conditions (10) are affine with respect to
the control input u, the control problem can be formulated
as a quadratic program (QP) with the conditions as
constraints (Ames et al., 2019):

min
u∈U,δ∈R

1

2
uTH(x)u+ cT (x)u+ wδ2

subject to

Lf̄Vϵ(η, z) + LḡVϵ(η, z)u ≤ −a3
ϵ
Vϵ(x) + δ

Lr
fh(x) + LgL

r−1
f h(x)u ≥ −Kαηb(x).

(11)

Here, H : D → Rm×m is any positive semi-definite matrix,
c : D → Rm, and δ ∈ R is a slack variable penalized by
w > 0. Note that a slack variable has only been added
to the CLF-based constraint, effectively creating a strict
prioritization of the CBF-based constraint over the CLF-
based constraint.

3.2 Task-priority framework

The framework presented in Basso and Pettersen (2020)
ensures strict task priority through iteratively solving QPs,
where the QPs corresponding to the highest prioritized
task levels are solved first, before the QPs for the lower
level tasks are solved subsequently. The higher priority
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definite function V (x) that satisfies
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Definition 1. A continuously differentiable function Vϵ :
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standard definition of a CBF, however, assumes that the
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depends on the control input u. For robotic systems, this
is often not the case, as the set we want to render forward
invariant typically is related to the robot pose, while the
control input usually is a generalized force coming in at
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In the exponential CBF (ECBF) formalism, however, h(x)
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meaning
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tasks are implemented as strong (slack parameter-free)
constraints in the lower priority tasks’ QPs, while the tasks
at that priority level are implemented as soft constraints
(with slack parameters), mirroring the prioritization of the
CBF inequality over the CLF inequality in (11).

Soft priority between the tasks at each task level is imple-
mented by relating different-valued penalty parameters w
to the slack variables δ corresponding to each task.

The QP in (11) can be extended to include several equality
and inequality tasks. The input-output dynamics for each
of the N equality tasks are given by

y
(ρi)
i = Lρi

f yi(x) + LgL
ρi−1
f yi(x)u i = 1, . . . , N, (12)

and the external dynamics states ηi and RES-CLFs Vϵ,i

are defined analogously to (4a), (5) and (9). Furthermore,
with M inequality tasks described by the superlevel sets
Cj of rj times continuously differentiable functions hj(x),
the control input can be obtained by solving the following
QP:

min
u∈U,δ∈RN

uTH(x)u+ cT (x) + δTWδ

subject to

Lf̄iVϵ,i + LḡiVϵ,iu ≤ −a3,i
ϵ

Vϵ,i + δi i = 1, . . . , N

L
rj
f hj + Lrj−1

g hju ≥ −Kα,jηb,j j = 1, . . . ,M

(13)

where W ∈ Rm×m is the diagonal matrix of penalty
parameters and ηb are defined similarly as in Section 3.1.2.

To establish more than two priority levels, a new QP is
solved for every level below the first two (which can be
established by a single QP as in (13)). The control input
u1 obtained from the first QP can be refined to solve
tasks at lower priority levels without affecting the N0+N1

equality tasks of the first two priority levels by enforcing
Lf̄iVϵ,i + LḡiVϵ,iu ≤ Lf̄iVϵ,i + LḡiVϵ,iu1, or equivalently

LḡiVϵ,iu ≤ LḡiVϵ,iu1 (14)

for i = 1, . . . , N0 +N1. Likewise, the M0 +M1 inequality
tasks of the first two priority levels can be left unaffected
by enforcing

LgL
rj−1
f hju ≥ LgL

rj−1
f hju1. (15)

For an arbitrary priority level p, the control input up can
then be obtained by solving the following QP:

min
up∈U,δ∈RNp ,s∈RMp

uT
p Hup + cTup + δTWpδ + sTKps

subject to

LḡiVϵ,iup ≤ LḡiVϵ,iup−1 i = 1, . . . , N̄p−1

LgL
rj−1
f hjup ≥ LgL

rj−1
f hjup−1 j = 1, . . . , M̄p−1

Lf̄kVϵ,k+LḡkVϵ,kup≤−a3,k
ϵ

Vϵ,k+δk k=N̄p−1+1, . . . , N̄p

Lrl
f hl+Lrl−1

g hlup ≥ −Kα,lηb,l−sl l=M̄p−1+1, . . . , M̄p.

(16)
Here, the slack variables s are penalized by elements in the
diagonal matrix Kp ∈ RMp×Mp , N̄p = N0 +N1 + · · ·+Np

and M̄p = M0 +M1 + · · ·+Mp, where Np and Mp are the
number of equality and inequality tasks at priority level p,
respectively.

4. POWER CONSTRAINT

In this section, we propose a constraint on the produced
power to enhance the safety of the system without the need
for an energy budget. The power constraint is motivated
by Cuniato et al. (2022), and we adapt this to use a
heuristic stability measure instead of the largest Lyapunov
exponent (LLE) used in their work. Based on this power
constraint, we propose an expression for the power bound
that, contrary to that in Cuniato et al. (2022), allows
different gains for when the desired trajectory is found
to be stable and when it is not. Lastly, we show how this
power constraint can be incorporated in the task-priority
framework presented in Section 3 to achieve enhanced
safety without sacrificing the strict task priority.

4.1 Power constraint

The produced power with respect to a task of size m is
given by the inner product of the control wrench τc ∈ Rm

and the generalized velocity error ν̃ ∈ Rm = ν−νd related
to that task. Here, ν and νd are the generalized velocities
and the desired generalized velocities, respectively. The
proposed upper bound on the produced power can thus be
written as

ν̃T τc ≤ p̄(λ∗, ν̃). (17)

Notice that p̄ is not constant, but varies with ν̃ and
λ∗, the heuristic stability measure related to the task.
The dependency on λ∗ rather than the LLE is the sole
difference between (17) and the constraint proposed in
Cuniato et al. (2022). The computation of this stability
measure will now be presented.

4.2 Stability measure

The stability measure is inspired by, but not necessarily
equal to, the LLE of the task trajectory. The Lyapunov
exponents of a dynamical system define the exponential
rate of convergence or divergence of trajectories starting
close to each other. If the system has a positive LLE,
it indicates that the trajectories are unstable, while a
negative LLE indicates the asymptotic stability of the
trajectory in question.

To compute the stability measure, we use the method
proposed in Dabrowski (2012) for computing the finite-
time LLE:

λ∗ =
x̃T ˙̃x

x̃T x̃
, (18)

where λ∗ is the LLE and x̃(t) = xnom(t) − xp(t) is the
perturbation vector between a nominal solution xnom(t)
and a perturbed solution xp(t) of a dynamical system
ẋ = F (x). In our case, x̃ is given by x̃ = x − xd, and
λ∗ thus becomes a measure of the rate at which x̃ is
instantaneously converging to or diverging from zero.

The solution λ∗ of (18) is, however, not necessarily the
LLE of the system in our case. The equation yields
the biggest real part of the eigenvalues of the Jacobian
dF
dx (x(t)), but the differentiability of the system ẋ = F (x)
cannot be guaranteed in general, which is a prerequisite
for λ∗ to be an LLE. Specifically, the QPs used in the
task-priority framework presented in Section 3 may give
a solution that is not differentiable in x. The stability
measure given by (18) is thus not necessarily an LLE, but

still provides a measure of the instantaneous convergence
of the system to the desired trajectory. It can therefore
be used as a heuristic stability measure. In practice, low-
pass filtering of λ∗ is advised to avoid e.g. noise-related
problems.

4.3 Power bound

To enhance safety, we want to dissipate energy when the
state x diverges from the desired state xd (λ∗ > 0).
Simultaneously, we want to allow the system to generate
energy when x is converging to xd (λ∗ < 0) to improve the
performance of the task. We do this by slightly altering
the expression for the power bound p̄, see (17), that was
proposed in Cuniato et al. (2022):

p̄(λ∗, ν̃) =

{
−kλ,gλ

∗ if λ∗ ≤ 0

−kλ,dλ
∗ν̃T ν̃ if λ∗ > 0.

(19)

The alteration lies in the added possibility of choosing
different gains kλ,g, kλ,d > 0 for the stable and the un-
stable case, yielding increased design freedom. This can
for instance be used to enforce more aggressive energy dis-
sipation when the system is unstable, while simultaneously
preventing too much energy generation from being allowed
when the system is stable. Note also the inclusion of ν̃
in the second case. As in Cuniato et al. (2022), this is
added to ensure the feasibility of the energy dissipation
constraint, as the system cannot dissipate energy if there
is no (kinetic) energy to dissipate.

4.4 Inclusion in the task-priority framework

In Cuniato et al. (2022), the power constraint is imple-
mented as a CBF, either placing constraints on the state
x in case of a state feedback controller u = k(x), or directly
on the control input u through an integral CBF (I-CBF)
(Ames et al., 2021). When the I-CBF is used, the state is
augmented with the control input, and the optimization
problem is solved for the time derivative of the control
input, u̇. Neither of these solutions are fitting for the task-
priority framework we adopt in this work.

Firstly, as we do not have a closed-form solution to the
optimization problem yielding u, placing a constraint on u
through a constraint on x is not appropriate. Secondly,
using an I-CBF, one could either place it inside the
task-priority framework by having all the optimization
problems solve for u̇ instead of u, or place the I-CBF as
a “layer” on top of the existing controller, adapting the
control input in a minimally invasive fashion to comply
with the power constraint. Neither of these methods would
be a good fit, though, as the first would entail time
differentiating the entries of the dynamic model used in
the CLF- and CBF-based tasks of the hierarchy, while the
second would destroy the strict task priority. Instead, the
power constraint (17) is implemented as-is, abandoning
the CBF paradigm.

The constraint should not be placed at the top priority
level, as the satisfaction of e.g. joint and actuator con-
straints is more important, but should ideally be placed
above pure performance tasks such as the tracking of a
desired trajectory.

Strict priority can be achieved by enforcing the power con-
straint not only on the solution of the QP corresponding to

the priority level where the power constraint task is placed,
but on the solution of every QP corresponding to a priority
level below that one. In case tasks from a level prioritized
higher than the one where the power constraint task is
introduced require the power constraint to be violated,
the solutions of the QPs corresponding to priority levels
below the power constraint task are then constrained to
not violate the power constraint (17) any more than was
required by the higher-priority tasks. Specifically, this is
done by including the constraint

ν̃T τc,p ≤ p̄+ δ∗p̄ (20)

in all those lower-level QPs, following the lines of Kanoun
et al. (2011). Here, τc,p is the control wrench yielded by
the QP to be solved for the current priority level, while δ∗p̄
is a constant whose value is equal to that of the slack
variable associated with the power constraint task. We
will now present an example of what a task hierarchy
including a power constraint could look like for a UVMS
with dynamics given by (6).

Task hierarchy example In this example, three set-based
and four equality tasks, distributed on four priority levels,
are incorporated in the task-priority framework as given
in Table 1.

Table 1. The task hierarchy.

Level Tasks

1 Joint angle limits and actuator limits
2 Power constraint
3 Base orientation, base y- and z-position,

and base force in x-direction
4 Joint angle velocities

The power constraint (17) is implemented at the second
priority level, and is implemented as individual constraints
for each of the base’s degrees of freedom (DoFs):

[c1, . . . , c6]
T := diag(ν̃)[I6, 06×n]Bu ≤ [p̄1, . . . , p̄6]

T . (21)

This allows a soft prioritization between the power con-
straints along the different DoFs. Here, the velocity error
ν̃ is set as ν̃ = [vT − vTd , ω

T − ωT
d ]

T , where v and ω are
as in Section 2.2, and vd and ωd are the desired linear and
angular velocities of the base, respectively. The desired
velocity along the inertial x-axis is defined as zero.

The base force- and pose-related tasks are placed at the
third priority level. To control the force the base is to
exert along the inertial x-axis, an equality force task
is introduced through two inequality constraints, c7 :=
[1, 01×(5+n)]Bu ≤ fd and c8 := [1, 01×(5+n)]Bu ≥ fd,
bounding the force from above and below. To fully control
the base pose, two CLF-based tasks, a base position task,
y1 = pibyz

−pibyz,d
, concerning the position along the inertial

y- and z-axis, and a base orientation task, y2 = ε̃, are also
included at the same priority level. Here, fd is the desired
force, pibyz

and pibyz,d
are the base’s actual and desired

position along the inertial y- and z-axes, respectively, and
ϵ̃ is the imaginary part of the error quaternion q̃ = q∗d ⊗
q, where q and qd are unit quaternions representing the
actual and the desired base orientation, respectively. Note
that the force task is neither CBF- nor CLF-based, and
is therefore incorporated in the task-priority framework
similarly to the power constraint task, cf. (20).

The most safety-critical tasks are introduced at the top
priority level, which in this case are constraints on the
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still provides a measure of the instantaneous convergence
of the system to the desired trajectory. It can therefore
be used as a heuristic stability measure. In practice, low-
pass filtering of λ∗ is advised to avoid e.g. noise-related
problems.

4.3 Power bound

To enhance safety, we want to dissipate energy when the
state x diverges from the desired state xd (λ∗ > 0).
Simultaneously, we want to allow the system to generate
energy when x is converging to xd (λ∗ < 0) to improve the
performance of the task. We do this by slightly altering
the expression for the power bound p̄, see (17), that was
proposed in Cuniato et al. (2022):

p̄(λ∗, ν̃) =

{
−kλ,gλ

∗ if λ∗ ≤ 0

−kλ,dλ
∗ν̃T ν̃ if λ∗ > 0.

(19)

The alteration lies in the added possibility of choosing
different gains kλ,g, kλ,d > 0 for the stable and the un-
stable case, yielding increased design freedom. This can
for instance be used to enforce more aggressive energy dis-
sipation when the system is unstable, while simultaneously
preventing too much energy generation from being allowed
when the system is stable. Note also the inclusion of ν̃
in the second case. As in Cuniato et al. (2022), this is
added to ensure the feasibility of the energy dissipation
constraint, as the system cannot dissipate energy if there
is no (kinetic) energy to dissipate.

4.4 Inclusion in the task-priority framework

In Cuniato et al. (2022), the power constraint is imple-
mented as a CBF, either placing constraints on the state
x in case of a state feedback controller u = k(x), or directly
on the control input u through an integral CBF (I-CBF)
(Ames et al., 2021). When the I-CBF is used, the state is
augmented with the control input, and the optimization
problem is solved for the time derivative of the control
input, u̇. Neither of these solutions are fitting for the task-
priority framework we adopt in this work.

Firstly, as we do not have a closed-form solution to the
optimization problem yielding u, placing a constraint on u
through a constraint on x is not appropriate. Secondly,
using an I-CBF, one could either place it inside the
task-priority framework by having all the optimization
problems solve for u̇ instead of u, or place the I-CBF as
a “layer” on top of the existing controller, adapting the
control input in a minimally invasive fashion to comply
with the power constraint. Neither of these methods would
be a good fit, though, as the first would entail time
differentiating the entries of the dynamic model used in
the CLF- and CBF-based tasks of the hierarchy, while the
second would destroy the strict task priority. Instead, the
power constraint (17) is implemented as-is, abandoning
the CBF paradigm.

The constraint should not be placed at the top priority
level, as the satisfaction of e.g. joint and actuator con-
straints is more important, but should ideally be placed
above pure performance tasks such as the tracking of a
desired trajectory.

Strict priority can be achieved by enforcing the power con-
straint not only on the solution of the QP corresponding to

the priority level where the power constraint task is placed,
but on the solution of every QP corresponding to a priority
level below that one. In case tasks from a level prioritized
higher than the one where the power constraint task is
introduced require the power constraint to be violated,
the solutions of the QPs corresponding to priority levels
below the power constraint task are then constrained to
not violate the power constraint (17) any more than was
required by the higher-priority tasks. Specifically, this is
done by including the constraint

ν̃T τc,p ≤ p̄+ δ∗p̄ (20)

in all those lower-level QPs, following the lines of Kanoun
et al. (2011). Here, τc,p is the control wrench yielded by
the QP to be solved for the current priority level, while δ∗p̄
is a constant whose value is equal to that of the slack
variable associated with the power constraint task. We
will now present an example of what a task hierarchy
including a power constraint could look like for a UVMS
with dynamics given by (6).

Task hierarchy example In this example, three set-based
and four equality tasks, distributed on four priority levels,
are incorporated in the task-priority framework as given
in Table 1.

Table 1. The task hierarchy.

Level Tasks

1 Joint angle limits and actuator limits
2 Power constraint
3 Base orientation, base y- and z-position,

and base force in x-direction
4 Joint angle velocities

The power constraint (17) is implemented at the second
priority level, and is implemented as individual constraints
for each of the base’s degrees of freedom (DoFs):

[c1, . . . , c6]
T := diag(ν̃)[I6, 06×n]Bu ≤ [p̄1, . . . , p̄6]

T . (21)

This allows a soft prioritization between the power con-
straints along the different DoFs. Here, the velocity error
ν̃ is set as ν̃ = [vT − vTd , ω

T − ωT
d ]

T , where v and ω are
as in Section 2.2, and vd and ωd are the desired linear and
angular velocities of the base, respectively. The desired
velocity along the inertial x-axis is defined as zero.

The base force- and pose-related tasks are placed at the
third priority level. To control the force the base is to
exert along the inertial x-axis, an equality force task
is introduced through two inequality constraints, c7 :=
[1, 01×(5+n)]Bu ≤ fd and c8 := [1, 01×(5+n)]Bu ≥ fd,
bounding the force from above and below. To fully control
the base pose, two CLF-based tasks, a base position task,
y1 = pibyz

−pibyz,d
, concerning the position along the inertial

y- and z-axis, and a base orientation task, y2 = ε̃, are also
included at the same priority level. Here, fd is the desired
force, pibyz

and pibyz,d
are the base’s actual and desired

position along the inertial y- and z-axes, respectively, and
ϵ̃ is the imaginary part of the error quaternion q̃ = q∗d ⊗
q, where q and qd are unit quaternions representing the
actual and the desired base orientation, respectively. Note
that the force task is neither CBF- nor CLF-based, and
is therefore incorporated in the task-priority framework
similarly to the power constraint task, cf. (20).

The most safety-critical tasks are introduced at the top
priority level, which in this case are constraints on the
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actuators’ minimum and maximum output, along with 2n
ECBFs to avoid the joint angle limits, hi = θi− θi,min and
hi+n = θi,max − θi for i = 1, . . . , n. At the lowest priority
level, CLF-based equality tasks for the joint velocities,
y2+j = θ̇j − θ̇j,d for j = 1, . . . , n, are introduced to fully
define the desired behavior of the robot.

As the power is constrained individually for each DoF in
(21), the stability measure λ∗ is also computed individually
for each DoF. This, again, means that only individual
errors x̃ and their derivatives ˙̃x are used when calculating
λ∗ through (18). Thus, we avoid adding quantities with
different units, which would have been the case if we had
used e.g. both the position error and the orientation error
in the same computation. The errors, x̃ and ˙̃x, are set as
the position error and its derivative for the position task,
the vector part of the quaternion error and its derivative
for the orientation task, and the integral of the force error
and the force error itself for the power constraint task.
As in Cuniato et al. (2022), using the force error and its
integral is preferred over using the force error and its time
derivative, as the latter is noisy in practice.

5. SIMULATIONS

To showcase the merit of the proposed method, the con-
trol scheme was implemented on a model of an AIAUV
(see Fig. 1) interacting with a spring that was suddenly
removed after 2 s, and compared with the same control
scheme, but without the power constraint. The simulation
was done in Matlab/Simulink, using an ode3 solver with
a fixed time step of 0.001 s.

The task hierarchy and the tasks therein were set as
described in Section 4.4.1, with the gains and the weights
for the penalty parameters of the non-CBF-based tasks as
given in Table 2. The power constraint gains for dissipa-
tion, kλ,d, were set to 1000, 10 and 1 for the base’s linear
velocity along the inertial x-axis, the y- and the z-axis,
and for the angular velocity about each axis, respectively,
while the gains for the generation, kλ,g were set as kλ,d/10

5

to better match the slow dissipation caused by the low
velocities in our case. The desired force was set to fd = 10
N, while the desired joint angle velocities were set to zero.
The desired base pose, not including the position along the
inertial x-axis, was set to the initial one.

Table 2. The penalty parameters w and con-
vergence rates ϵ used in the simulations.

c1:6 c7:8 y1 y2 y3:2+n

w 1000 10 60 60 10
ϵ - - 0.9 0.9 0.9

As in Basso and Pettersen (2020), the objective functions
for the QPs described by (16) were set with H = ATA and
c = 2AT b, where A = [AT

1 A
T
2 A

T
3 ]

T and b = [bT1 b
T
2 b

T
3 ]

T are
the vertical concatenations of the A- and b-matrices from
(3) for the three CLF-based tasks in the simulation.

5.1 Simulation results

The results of the simulations are summarized in Figs.
2 and 3. In Fig. 2, we see the power generated by the
controller with respect to the base along the inertial x-
axis with and without the power constraint in place, while

Fig. 3 shows the position of the base along the inertial
x-axis in the two cases. It is clear from Fig. 2 that the
power constraint is only violated very slightly when it is
applied, and that the power constraint is adapted such
that once the spring is removed, and the force task diverges
from its desired value, the constraint forces the controller
to dissipate energy. From Fig. 3 we can see that this
dissipation stops the base from moving too far once the
spring is removed, only allowing the base to move about
0.1 mm in 18 s. Comparatively, the base moves more than
4 m in 18 s when the power constraint is not in place.
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Fig. 2. The power px generated by the controller with
respect to the base along the inertial x-direction
with (upper plot) and without (lower plot) the power
constrained to be less than p̄x.
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Fig. 3. The base position along the inertial x-axis with and
without the power constraint in place.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a control method for han-
dling the redundancy of robot manipulators, like UVMSs,
in tandem with handling the physical interaction of the

manipulator with its environment. Specifically, we have in-
troduced a constraint on the produced power with respect
to a task to increase the safety of a redundant robotic
manipulator. The constraint is implemented in a way that
respects the strict priority of the task-priority framework,
and also varies with the instantaneous convergence of the
task trajectory, enabling power to be generated when the
state trajectory is converging to the desired one, and
enforcing power dissipation when it is not. The proposed
method was validated through a simulation of an AIAUV,
where the merit of the method was demonstrated by com-
paring the results to those of the same controller without
the power constraint in place. In future work, the method
will be validated experimentally.
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Schäffer, A., and Stramigioli, S. (2017). Passive Hier-
archical Impedance Control Via Energy Tanks. IEEE
Robot. Autom. Lett., 2(2).

Dyrhaug, J.I., Tveter, E., Schmidt-Didlaukies, H.M.,
Basso, E.A., Pettersen, K.Y., and Gravdahl, J.T.
(2023). Robust Hierarchical Tracking Control of Vehicle-
Manipulator Systems. In Proc. IFAC World Congress.

From, P.J., Gravdahl, J.T., and Pettersen, K.Y. (2014).
Vehicle-Manipulator Systems: Modeling for Simulation,
Analysis, and Control. Advances in Industrial Control.
Springer London.

Garofalo, G. and Ott, C. (2020). Hierarchical Tracking
Control With Arbitrary Task Dimensions: Application
to Trajectory Tracking on Submanifolds. IEEE Robot.
Autom. Lett., 5(4).

Hanafusa, H., Yoshikawa, T., and Nakamura, Y. (1981).
Analysis and Control of Articulated Robot Arms with
Redundancy. IFAC Proceedings Volumes, 14(2).

Kanoun, O., Lamiraux, F., and Wieber, P.B. (2011). Kine-
matic Control of Redundant Manipulators: Generalizing
the Task-Priority Framework to Inequality Task. IEEE
Trans. Robot., 27(4).

Khalil, H. (2002). Nonlinear Systems. Pearson Education.
Prentice Hall, 3rd edition.
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manipulator with its environment. Specifically, we have in-
troduced a constraint on the produced power with respect
to a task to increase the safety of a redundant robotic
manipulator. The constraint is implemented in a way that
respects the strict priority of the task-priority framework,
and also varies with the instantaneous convergence of the
task trajectory, enabling power to be generated when the
state trajectory is converging to the desired one, and
enforcing power dissipation when it is not. The proposed
method was validated through a simulation of an AIAUV,
where the merit of the method was demonstrated by com-
paring the results to those of the same controller without
the power constraint in place. In future work, the method
will be validated experimentally.
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