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Abstract—A novel design for active compressor surge control
system (ASCS) using linear matrix inequality (LMI) approach
is presented and including a case study on piston-actuated
active compressor surge control system (PAASCS). The non-
linear system dynamics of the PAASCS is transformed into
linear parameter varying (LPV) system dynamics. The system
parameters are varying as a function of the compressor perfor-
mance curve slope. A compressor surge stabilization problem is
then formulated as a LMI problem. Solving the LMI problem
results in a feedback control gain for the compressor surge
stabilization and stability proof of the closed loop system in the
whole compressor operating area. Simulation results show that
the designed surge control system is able to stabilize compressor
surge. Significant improvement of the control system performance
is achieved by combining the LMI approach and linear quadratic
regulator (LQR).

I. INTRODUCTION

Compressor operation at lower mass flows is limited by
compressor surge. Compressor surge is an aerodynamic insta-
bility and results in axisymmetric oscillations of the compres-
sor mass flow and the compressor pressure. This phenomenon
is indicated by fluctuations at the compressor mass flow, at
the compressor discharged pressure, and at the compressor
flow temperature, and followed by vibrations on the rotating
parts. The vibrations reduce the reliability of the rotating parts
and large amplitude vibrations lead to compressor damage,
especially to the compressor blades and bearing.

A method for stabilizing compressor using a state feedback
control and an active element (actuator) has been introduced by
Epstein et al. [1]. The method is known as active compressor
surge control. Several studies on active compressor surge
control using different control design methods by including
linear and non-linear control methods for different actuators
have been presented, and are summarized in [2]–[4]. Most of
the active surge control studies uses the Greitzer compression
model to represent the dynamics of compressor states (pressure
and mass flow). The Greitzer compressor model is a model of
compression system which is able to predict transient com-
pressor states during compressor surge including compressor
mass flow and compressor [5].

Physical observations show that compressor produced pres-
sure (compressor discharged pressure) has a non-linear relation
to the compressor mass flow which is usually described in a

compressor map. A compressor map is commonly provided
by the compressor manufacturer. However, the compressor
map may also be obtained through a compressor performance
test by following steps: operate the compressor for several
operating points, record the mass flow and pressure data, and
do a curve fitting to approximate the whole operating points.
An approximation of compressor performance for a constant
compressor speed has been introduced in [6], while for the
varying compressor speeds has been presented in [7].

The main goal of an active compressor surge control sys-
tem design is to make the closed loop compressor system
to operate stable in the surge area. Previously, the surge
control was designed base on linear control approach [8]–
[10]. Using the linear control approach, the closed loop system
achievies locally asymptotically stable such that the stabilized
compressor surge area is limited. In order to make the closed
loop compressor system stable in the whole surge region, the
closed loop system must be globally asymptotically stable
(GAS). A necessary condition for GAS is the existence of
a Lyapunov function. Simon and Valavani applied Lyapunov-
based control for an active surge control system using close-
coupled valve [11]. Krstic et al. introduced a non-linear
control design method known as backstepping in [12]. The
backstepping method provides a systematic procedure to find
state feedback and Lyapunov function simultaneously. Several
works on active surge control using backstepping have been
presented afterwards [13]–[16]. However, the backstepping
may result in a complicated state feedback and can be difficult
to be implemented [17]. Two general state feedback control
laws for compressor surge control have been derived using
Lyapunov-based control method and guarantee the GAS of
the closed loop system [18]. However, applying the Lyapunov-
based control method is not straightforward and in general, it
is not possible to do performance adjustment base on a cost
function as in optimal control.

A non-linear system can be approximated by a linear system
through a linearization around an operating point and therefore
linear control methods are applicable. This approximation is
only valid for a limited region around the operating point as
basis in the linearization. Therefore, linearization at several
operating points is required to cover the whole operating area.
This will result in several linear systems and the parameters



M
T


Motor
Compressor Plenum Throttle

dp ,p pV p

tp

cL

Inlet

Station A Station B

twiw cp
dwAp Bp

sL

Piston
sw

su

ip

M
T


Motor
Compressor Plenum Throttle

,p pV p

tp

cL

Inlet

Station A Station B

twcp
Ap Bp

iw
ip dp

dw

Fig. 1. COMPRESSION SYSTEM EQUIPPED PAASCS.

are varying for each operating point. Linear matrix inequalities
(LMI)-based control is one of the powerful control design
methods for such linear parameter varying system [19], [20].
The LMI-based control is a convex optimization base on
Lyapunov stability condition. A Lyapunov function candidate,
which is a positive definite function and the time derivative
should be negative definite, is formulated as an LMI problem
[21]. The LMI problem is solved to obtain a positive definite
matrix such that the time derivative of the Lyapunov candidate
is negative definite. The LMI solution can be obtained using
available computational tools, for an example the YALMIP
Toolbox [22].

A piston-actuated active surge control system (PAASCS)
is a method to stabilize compressor surge by dissipating the
downstream compressor energy using a piston [17]. This paper
is presenting an application of LMI-based control method in an
active compressor surge system with a case study on PAASCS.
The goal is to obtain a state feedback control to stabilize
the whole compressor operating area and the control system
has a performance. The non-linear dynamics of PAASCS
is transformed into a linear parameter varying system, and
the compressor surge stabilization is formulated as an LMI
problem.

II. PISTON ACTUATED ACTIVE SURGE CONTROL SYSTEM

A piston actuated active surge control system (PAASCS) is
an active surge control system utilizing a piston as an actuator
to stabilize compressor surge. The piston generates mass flow
to manipulate the compressor downstream pressure in order
to stabilize compressor surge. PAASCS has been introduced
in [17] and the model is shown in Figure 1. The model was
developed base on the Greitzer compressor model [5] and all
assumptions in the Greitzer model are adopted. It is assumed
that pressures at station A (pA) and at station B (pB) are
equivalent to the ambient pressure. All pressures in the system
are measured relative to the ambient pressure. Heat transfer in
the system is neglected. Pressure drop along the inlet line is
neglected such that the inlet pressure (pi) is equal to pA. There
is no mass storage in the compressor such that the inlet mass
flow (wi) is equal to the compressor discharge mass flow (wd).

A plenum is a model of downstream control volume. The
plenum volume (Vp) can be representing a volume of pipeline
and/or vessel. It is assumed that the pressure in the plenum
(pp) is uniformly distributed in the plenum space. A throttle is
used to adjust the outlet mass flow (wt). The throttle generates
pressure drop (pt) between plenum and the outlet. A piston
is connected to the plenum for generating piston mass flow
(ws). The piston mass flow is used to manipulate the plenum
pressure to maintain the system to be stable.

Dynamic equations of the system are given as follows [18]:

ẇi =
Ac

Lc
[pc − pp] (1)

ṗp =
a20
Vp

[wi − wt − ws] (2)

where Ac is the inlet cross section area, Lc is the effective
length of the inlet, a0 is the speed of sound, and Vp is the
plenum volume.

The inlet mass flow dynamics is a function of the pressure
difference between the compressor discharge and the plenum.
Pressure at the compressor discharge is a result of energy
conversion from mechanical into pneumatic. It is a function
of the compressor mass flow and the compressor speed as
commonly shown in a compressor map. The compressor map
usually consists of a plot of the compressor produced pressure
against the compressor mass flow for several compressor
speeds. However, we consider only on a constant compressor
speed in this study.

A compressor performance at a constant speed can be
approximated by a qubic function [6]:

pc = pc0 +
H

2

[
2 + 3

(wi

W
− 1
)
−
(wi

W
− 1
)3]

(3)

where pc0 is the shut-off value of the axisymmetric char-
acteristic, W is the semi-width of the cubic axisymetric
compressor characteristic and H is the semi-hight of the cubic
axisymetric compressor characteristic, consults [6] for more
detailed definition.

III. LINEAR PARAMETER VARYING SYSTEM
REPRESENTATION

Define system states for the PAASCS as follows:

x1 = wi − wt (4)
x2 = pc − pp (5)

and substituting into (1) and (2) results in:

ẋ1 = k1x2 − ẇt (6)
ẋ2 = kmk1x2 − k2x1 + k2ws (7)

where k1 = Ac

Lc
, k2 =

a2
0

Vp
and km = dpc

dwi
. The variable km

represents the slope of compressor performance curve which
is varying at each operating point.

A state space form of the PAASCS dynamics is given as
follows:[

ẋ1

ẋ2

]
=

[
0 k1
−k2 kmk1

] [
x1

x2

]
+

[
0
k2

]
ws +

[
−1
0

]
ẇt. (8)
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Fig. 2. Compressor performance curve obtained through a performance test
[23].

The equation (8) can be expressed by:

ẋ = A(km)x+Bws +Dẇt, (9)

where x =
[
x1 x2

]T
, A(km) =

[
0 k1
−k2 kmk1

]
, B =[

0 k2
]T

, and D =
[
−1 0

]T
. The variable x is the

system states, ws is the system input, and wt is the system
disturbance. The ẇt is the rate change of compressor outlet
flow and the value is assumed to be bounded as the outlet
valve has usually slow dynamics.

Eigenvalues of the open loop system (8) are given by:

s1,2 =
kmk1 ±

√
(kmk1)

2 − 4k1k2

2
, (10)

where the real parts of eigenvalues indicate the system sta-
bility. Because the value of k1 is constant and k1 > 0, the
compressor system stability depends on the value of km, which
is the compressor performance curve slope. Therefore, the
compressor operates stable at along compressor performance
curve at negative slope (km < 0) and unstable at the positive
slope (km > 0). The unstable compressor operating along
the positive slope is known as surge. For a compressor
performance curve described in (3), the curve slope is given
by:

km =
3

2W
− 3

2

(wi

W
− 1
)2

, (11)

which is a function of the compressor mass flow. The slope
is varying in a range of k−m ≤ km ≤ k+m, where k+m is the
maximum slope and k−m is the minimum slope. The maximum
slope is k+m = 3H

2W achieved at mass flow wi = W , while the
minimum slope is k−m =

2pp

wo
[18].

Therefore, the system dynamics in (8) or (9) is a linear
parameter varying (LPV) system as the system matrix A is
a function of km. From now we use notation A instead of
A(km) in the interest of simplicity.

IV. LPV SYSTEM STABILIZATION

A PAASCS applies a piston to generate mass flow for
stabilizing compressor surge. The generated mass flow is
represented by the system input, ws, in (9). In order to design
a controller, define a state feedback:

ws = Kx (12)

where K is a control gain matrix. The closed loop system of
(9) is given as follows:

ẋ = [A+BK]x+Dẇt. (13)

It is required to find K such that the closed loop system
matrix is asymptotically stable. It is achieved iff [A+BK] is
Hurwitz. The asymptotic stability of a system is guaranteed
by the existence a Lyapunov function V (x), where: V (x) > 0
and V̇ (x) < 0. For (13), define a Lyapunov function candidate

V (x) = xTPx (14)

where P needs to satisfy the following conditions:

P > 0 (15)
ATP + PA+KTBTP + PBK < 0. (16)

Equation (16) is a bilinear matrix inequality (BMI) because
it has multiplication of two unknown variables, P and K.
Solving a BMI problem is difficult, and it is recommended to
convert a BMI problem into a linear matrix inequalities (LMI)
problem by the following steps [21]:

a. Define Y = P−1 and do pre- and post- multiplication to
(16) such that it results in:

Y AT +AY + Y KTBT +BKY < 0. (17)

Inequality (17) is still a BMI.
b. Define L = KY and substitute into (17) such that it

results in:

Y AT +AY + LTBT +BL < 0. (18)

Inequality (18) is a LMI.
Because the compressor map slope is varying in a certain
range, we need to define two LMIs which represents the
extreme operating region:

Y AT
1 +A1Y + LTBT +BL < 0 (19)

Y AT
2 +A2Y + LTBT +BL < 0 (20)

where A1 = A(k−m) for the minimum slope and A2 = A(k+m)
for the maximum slope, respectively. Both LMIs are then
solved simultaneously to find a positive definite matrix Y
and a matrix L such that the both LMIs in (19) and (20) are
satisfied. The YALMIP Toolbox together with Matlab is one
of the available software to solve the problem. Commands for
solving the problem are given as follows:
Y = sdpvar(2,2);
L = sdpvar(1,2,’full’);
F = [Y > 0];
F = [F, [Y*A1’+A1*Y+Bs*L+L’*Bs’] < 0];
F = [F, [Y*A2’+A2*Y+Bs*L+L’*Bs’] < 0];
solvesdp(F,-trace(Y))



TABLE I
PAASCS PARAMETERS [23]

Parameter Value Unit Parameter Value Unit
a0 340 m/s Vp 0.12 m3

Lc 0.8 m Ac 0.0038 m2

ρ 1.2041 kg/m3 As 0.0314 m2

ms 2 kg
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Fig. 3. COMPRESSION SYSTEM STATES WITHOUT SURGE CONTROL.

While the matrices Y and L are found, the matrices P and K
are obtained by P = Y −1 and K = LY −1, respectively.

A simulation is done to evaluate the closed loop system
performance using parameters data in Table I and a compressor
performance curve shown in Figure 2. The simulation scenario
is given as follows. A compressor is initially operating steady
at mass flow 0.06 kg/s and then the operating point is changed
at t = 50 seconds by reducing the mass flow to 0.015 kg/s
which is crossing the compressor surge line.

The simulation results are shown in Figure 3. It is shown
that the open loop compressor system experiences oscillation
in plenum pressure and inlet mass flow, and is known as
compressor surge. Moreover, the compressor surge is known
as a deep surge as the compressor mass flow is reversed
(negative mass flow). While Figure 4 shows simulation results
of the closed loop system using the designed control law,
the system operates stable in the desired operating point,
which means that the PAASCS is able to stabilize compressor
surge. However, the closed loop system has a long settling
time and the piston mass flow is very high compare to the
compressor mass flow which is not practical. A piston with a
large diameter and fast movement is required to generate the
high piston mass flow. The performance of the closed loop
system is therefore needed to be improved.
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Fig. 4. CLOSED LOOP TIME RESPONSE.

V. LMI-LQR METHOD

Considering the simulation results in the previous section,
the closed loop system performance needs to be improved.
Using the LMI formulation in (16), we can not do any
performance adjustment as the matrices A and B are given
from the plant, and the matrices P and K are obtained
through a computational process using the YALMIP Toolbox.
Performance adjustment bases on a cost function is commonly
done in optimal control theory, for example linear quadratic
regulator (LQR). Fortunately, combination of LQR method and
LMI method for control system design (LMI-LQR) has been
presented in [19], [21], [24], [25] and summarized as follows.
The LMI-LQR gives an opportunity to adjust the performance
of a closed loop system designed using LMI. The concept
of LMI-LQR is described as follows. A LQR problem for a
system:

ẋ = Ax+Bu (21)

is basically to find a control gain K such that a states feedback
control u = Kx minimizes a cost function:

J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt, (22)

where Q ≥ 0 and R > 0. Using u = Kx, the closed loop
system of (21) is given by:

ẋ = [A+BK]x (23)



and the cost function (22) can be expressed as:

J =
1

2

∫ ∞
0

xT
(
Q+KTRK

)
xdt. (24)

Assuming (23) is asymptotically stable by existing a Lyapunov
function:

V (x) = xTPx > 0 (25)

then time derivative of V (x) along the system trajectories (23)
is given by:

V̇ (x) = x(ATP + PA+KTBTP + PBK)x < 0 (26)

where P > 0. The negative definiteness of (26) can be
reinforced by defining:

V̇ (x) < −xT
(
Q+KTRK

)
x < 0. (27)

A time integration from 0 to ∞ of (27) will result in:

V (∞)− V (0) < −
∫ ∞
0

xT
(
Q+KTRK

)
xdt (28)

or

xT (∞)Px(∞)−xT (0)Px(0) < −
∫ ∞
0

xT
(
Q+KTRK

)
xdt.

(29)
Since (23) is asymptotically stable then x(∞) is equal to zero
such that (29) becomes:

xT (0)Px(0) >

∫ ∞
0

xT
(
Q+KTRK

)
xdt. (30)

Equation (30) shows upper bound of the cost function (24),
such that the cost function will be minimum by minimizing
the matrix P :

min
P,K

xT (0)Px(0)

s.t V̇ (x) < −xT
(
Q+KTRK

)
x.

(31)

Expressing the minimization constraint along the trajectories
of system (23), the (31) becomes:

min
P,K

xT (0)Px(0)

s.t (A+BK)
T
P + P (A+BK) + (Q+KTRK) < 0.

(32)
Since the initial condition x(0) is given, it can be eliminated
from (32) and the minimizing problem becomes:

min
P,K

tr(P )

s.t (A+BK)
T
P + P (A+BK) +Q+KTRK < 0.

(33)
Equation (33) is a non-convex optimization problem where the
constraint is BMI. A transformation is required to transform
the BMI into LMI as done in the previous section. Define Y =
P−1 and do pre- and post- multiplications to the optimization
constraint of (33) such that the constraint becomes:

Y AT +AY + Y KTBT +BKY + Y QY + Y KTRKY < 0.
(34)

Define L = KY and substituting it into (34) results in:

Y AT +AY + LTBT +BL+ Y QY + LTRL < 0. (35)

By using Schur complement, (35) can be expressed as: (AY +BL)
T
+ (AY +BL) Y LT

Y −Q−1 0
L 0 −R−1

 < 0.

(36)
which is in a LMI. A detail explanation of Schur complement
is given in the Appendix. Equation (33) is therefore expressed
as a convex optimization as follows:

max
Y,L

tr(Y )

s.t

 (AY +BL)
T
+ (AY +BL) Y LT

Y −Q−1 0
L 0 −R−1

 < 0.

(37)
Applying the LMI-LQR method in PAASCS design is

presented as follows. Define weighting cost function matrices

Q =

[
1 0
0 1

]
, and R = 10. YALMIP Toolbox is used to

solve the LMI by the following commands:
Q=eye(2);
R=10;
Y = sdpvar(2,2);
L = sdpvar(1,2,’full’);
F = [Y >= 0];
F = [F, [-A1*Y-Bs*L + (-A1*Y-Bs*L)’ Y L’;...

Y inv(Q) zeros(2,1);...
L zeros(1,2) inv(R)] > 0];

F = [F, [-A2*Y-Bs*L + (-A2*Y-Bs*L)’ Y L’;...
Y inv(Q) zeros(2,1);...
L zeros(1,2) inv(R)] > 0];

solvesdp(F,-trace(Y))
K = double(L)*inv(double(Y));

and running the code results in a new control gain K.
Simulation of PAASCS using the new control gain for the
same system parameters and simulation scenario results in an
improvement of the closed loop system performance as shown
in Figure 5. Simulation of the PAASCS designed using LMI-
LQR results in stabilized compressor surge where the control
system requires much less piston mass flow and much faster
system response than the PAASCS designed using LMI only.

VI. CONCLUSION

A control design of an active compressor surge control sys-
tem using LMI method has been presented. The LMI method
provides an analytic solution to obtain a control gain and a
stability proof. A study case of applying the LMI method for
the PAASCS resulted in a linear state feedback control which
is able to stabilize the compressor surge. The control system
performance is improved significantly by combining the LMI
method and LQR method. This method is very systematically
for nonlinear control system design by approaching a nonlinear
system as a linear parameter varying system and the control
system design problem is expressed as a LMI problem. The
LMI solution is obtained directly using the available software.

ACKNOWLEDGMENT

The authors acknowledge the financial support of Siemens
Oil and Gas Solutions Offshore through the Siemens-NTNU
collaboration project in a period of 2009-2013.



48 50 52 54 56 58 60

t [second]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
w

i
[k
g
/
s]

wi

wiref

48 50 52 54 56 58 60

t [second]

18.5

19

19.5

20

20.5

21

21.5

p
p
[k
P
a
]

48 50 52 54 56 58 60

t [second]

-1

0

1

2

3

4

w
s
[k
g
/
s]

×10-3

Fig. 5. CLOSED LOOP TIME RESPONSE LQR.

REFERENCES

[1] A. H. Epstein, J. E. F. Williams, and E. M. Greitzer, “Active suppres-
sion of compressor instabilities,” in Proc. of AIAA 10th Aeroacoustic
Conference, Seattle, 1986.

[2] F. Willems and B. de Jager, “Modeling and control of compressor flow
instabilities,” Control Systems, IEEE, vol. 19, no. 5, pp. 8 –18, oct 1999.

[3] N. Uddin and J. T. Gravdahl, “Bond graph modeling of centrifugal
compression systems,” SIMULATION, vol. 91, no. 11, pp. 998–1013,
2015.

[4] J. T. Gravdahl and O. Egeland, Compressor surge and rotating stall:
Model and control. London: Springer Verlag, 1999.

[5] E. M. Greitzer, “Surge and rotating stall in axial flow compressor, part
I: Theoritical compression system model,” J. Engineering for Power,
vol. 98, pp. 190–198, 1976.

[6] F. K. Moore and E. M. Greitzer, “A theory of post stall transients
in an axial compressors system: Part I-Development of equation,” J.
Engineering for Gas Turbine and Power, vol. 108, pp. 68–76, 1986.

[7] J. T. Gravdahl, O. Egeland, and S. O. Vatland, “Drive torque actuation
in active surge control of centrifugal compressor,” Automatica, vol. 38,
pp. 1881–1893, 2002.

[8] J. E. F. Williams and X. Y. Huang, “Active stabilization for compressor
surge,” J. Fluid Mechanics, vol. 204, pp. 245–262, 1989.

[9] D. Gysling, D. Dugundji, E. M. Greitzer, and A. H. Epstein, “Dynamic
control of centrifugal compressor surge using tailored structures,” ASME
J. Turbomachinery, vol. 113, pp. 710–722, 1991.

[10] J. Pinsley, G. Guenette, A. H. Epstein, and E. M. Greitzer, “Active
stabilization of centrifugal compressor surge,” ASME J. Turbomachinery,
vol. 113, pp. 723–732, 1991.

[11] J. S. Simon and L. Valavani, “A lyapunov based nonlinear control
scheme for stabilizing a basic compression system using a close-coupled
control valve,” in Proc. of the American Control Conference, 1991, pp.
2398–2406.

[12] M. Krstic, I. Kanellakopoulos, P. V. Kokotovic et al., Nonlinear and
adaptive control design. John Wiley & Sons New York, 1995, vol. 8.

[13] M. Krstic, J. Protz, J. Paduano, and P. Kokotovic, “Backstepping designs
for jet engine stall and surge control,” in Decision and Control, 1995.,
Proceedings of the 34th IEEE Conference on, vol. 3. IEEE, 1995, pp.
3049–3055.

[14] J. T. Gravdahl and O. Egeland, “Compressor surge control using a
close-coupled valve and backstepping,” in American Control Conference,
1997. Proceedings of the 1997, vol. 2. IEEE, 1997, pp. 982–986.

[15] ——, “Control of the three state moore-greitzer compressor model using
a close-coupled valve,” in Proc. 1997 European Control Conference,
1997.

[16] A. Banaszuk and A. J. Krener, “Design of controllers for mg3 compres-
sor models with general characteristics using graph backstepping,” in
American Control Conference, 1997. Proceedings of the 1997, vol. 2.
IEEE, 1997, pp. 977–981.

[17] N. Uddin and J. T. Gravdahl, “Active compressor surge control using
piston actuation,” in Proc. of the ASME Dynamics System and Control
Conference, Virginia, 2011.

[18] ——, “Two general state feedback control laws for compressor surge
stabilization,” in 24th Mediterranean Conference on Control and Au-
tomation (MED), Athens, Greece, June 2016, pp. 689–695.

[19] C. Olalla, R. Leyva, A. El Aroudi, and I. Queinnec, “Robust lqr control
for pwm converters: an lmi approach,” Industrial Electronics, IEEE
Transactions on, vol. 56, no. 7, pp. 2548–2558, 2009.

[20] J. Mohammadpour and C. W. Scherer, Control of linear parameter
varying systems with applications. Springer, 2012.

[21] S. P. Boyd, Linear matrix inequalities in system and control theory.
Siam, 1994, vol. 15.
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APPENDIX

APPENDIX: LMI-LQR DERIVATION

(A+BK)TP + P (A+BK) < −(Q+KTRK)
ATP +KTBTP + PA+ PBK +Q+KTRK < 0

X(ATP +KTBTP + PA+ PBK +Q+KTRK)X < 0
XAT +XKTBT +AX +BKX +XQX +XKTRKX < 0

XAT + LTBT +AX +BL+XQX +XKTRKX < 0
XAT +AX + LTBT +BL+XQX + LTRL < 0

XAT +AX + LTBT +BL+
[
X LT

] [ Q 0
0 R

] [
X
L

]
< 0

By using Schur complement it can be represented as:

XAT +AX + LTBT +BL︸ ︷︷ ︸
S11

+
[
X LT

]︸ ︷︷ ︸
S12

[
Q 0
0 R

]
︸ ︷︷ ︸

S22

[
X
L

]
︸ ︷︷ ︸

S21

< 0

and then XAT +AX + LTBT +BL X LT

X −Q−1 0
L 0 −R−1

 < 0.

Schur complement of s22 in S:

S =

[
s11 s12
s21 s22

]
< 0⇔ s11 − s12(s22)

−1
s21 < 0


