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Abstract: The field of precision agriculture increasingly utilize and develop robotics for various
applications, many of which are dependent on high accuracy localization and attitude estimation.
Special attention has been put towards full attitude estimation by low-cost sensors, in relation
to the development of an autonomous field robot. Quaternions have been chosen due to its
continuous nature, and with respect to applications in the pipeline with on other platforms.
The performance and complexity of two approaches to attitude estimation has been investigated:
One Multiplicative Extended Kalman Filter (MEKF) and one non-linear observer. Both were
implemented on an ARM Cortex M3 microcontroller with sensors for a Attitude Heading
Reference System (AHRS), and benchmarked towards a relative high grade commercial AHRS
device.
The relative computational burden of the MEKF have been underlined, by execution times
more than 10 times those of the non-linear estimator. The implementation complexity is also
significantly lower for the non-linear observer, which facilitate test and verification through more
transparent software.
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1. INTRODUCTION

Modern agriculture is increasingly utilizing advanced tech-
nology to automate and better manage its production
processes. The use of autonomous systems for weed con-
trol is a research field with growing interest, and several
autonomous systems have been demonstrated, where some
are presented in the review by Slaughter et. al. Slaughter
et al. (2008).

Adigo is developing a mobile robot, illustrated in Figure 1,
for research on precision agriculture1. Building on previous
experience with autonomous robots, the attitude estima-
tion is given special attention as part of the localization
and navigation for the robot. Attitude heading reference
systems (AHRS) are widely utilized in other applications
of autonomous ground vehicles, and provide important
input to the localization sensor fusion.

The work presented can facilitate customized and better
integrated solutions with attitude estimation and enable
the use of low cost sensors.

1.1 Multiplicative Extended Kalman Filter

The survey by Crassidis, Markley and Cheng Crassidis
et al. (2007) provides a good background and review of

1 Consortium research program “Multisensory Precision Agriculture
- Improving yields and reducing environmental impact” sponsored by
the Norwegian Research Council [207829].

Fig. 1. A robot developed for autonomous N2O mea-
surements on cereal fields. The robots autonomy is
currently under development where efficient attitude
estimation is a focus.

various attitude filters, observers and smoothers. For a sin-
gularity free representation of attitude we have considered
quaternion estimators.

The Extended Kalman filter (EKF) has become the
workhorse of attitude estimation, largely through the re-
search effort and numerous applications in space explo-
ration. There are numerous variations on how to imple-
ment an EKF for quaternion estimation, especially in the
update step where both quaternion addition and multipli-



cation can be utilized. Multiplication should however be
preferred Shuster (1993).

Implementing multiple vector measurements directly in
the MEKF is not trivial, and is accompanied with a com-
plex set of tuning parameters Markley et al. (2003). It is
however quite straightforward to implement a quaternion
measurement in the MEKF. Using the QUEST Shuster
and Oh (1981), or an equivalent algorithm, for prepro-
cessing measurement vectors greatly simplify the filter
interface. The QUEST algorithm provides support for an
arbitrary number of measurement vectors, and the QUEST
covariance matrix can directly feed the Kalman R matrix
Shuster (1990),Crassidis et al. (2007).

1.2 Non-linear observer: Explicit Complementary Filter

The EKF does have a number of drawbacks: Implemen-
tation is not straight-forward, the numerous parameters
require tuning, it is computationally expensive, and it
is usually difficult to prove its convergence Martin and
Salaun (2010).

Many of these issues can be addressed by nonlinear ob-
servers, and especially the stability properties can be
proven, using Lyapunov-based methods. A significant step
was taken with the Explicit Complementary Filter pro-
posed by Hamel and Mahony (2006) and refined in Mahony
et al. (2008). It makes use of the vector measurements di-
rectly in body frame, and also includes gyro bias estimates.
The filter provides near global stability. The concept has
later been extended to include time-varying reference vec-
tors by Hua (2010) and Grip et al. (2011). For systems
with low accelerations the filter performs as well as these
later designs (Hua, 2010), and is thus suitable for wheeled
robotic applications with slow dynamics.

2. MODELLING

We operate with three coordinate frames, where our ref-
erence frame is North-East-Down (NED), the robot body
frame is defined as forward-right-down (BODY) and the
instrument frame depending on how the sensor is mounted
in the robot (I). The frames are indicated by subscripts n,
b and i respectively.

2.1 Unit Quaternions

Rotations and attitude are represented by unit quater-
nions, where the scalar is defined as the first element in

q = η + iε2 + jε2 + kε3 = [η, ε]
T

(1)

Quaternion multiplication is expressed by:

p⊗ q =
[
ηp
εp

]
⊗
[
ηq
εq

]
=

[
ηp ηq − εTp εq

ηp εq + ηq εp + εp × εq

]
. (2)

Consecutive rotations by quaternions are done by post-
multiplication, in contrast to rotation matrices. Thus, the
rotation from NED to I, can be composed by rotations
from NED to BODY to I as qi

n = qb
n ⊗ qi

b

2.2 Angular velocity

For a rotation from NED to BODY, the kinematic differ-
ential equation is given by Egeland and Gravdahl (2002)

q̇ = 1
2 [0,ωn]

T ⊗ q = 1
2q⊗ [0,ωb]

T
(3)

where ωn and ωb are rotational velocities.

2.3 Measurements

The AHRS receives measurement vectors from a MEMS
accelerometer, ab, and magnetometer, mb, in BODY
frame. They are normalized and compared with their ref-
erence vectors in NED frame, an and mn. The MEMS gyro
is modelled with a bias in body frame as ωb = ωactual +b

3. MULTIPLICATIVE EXTENDED KALMAN FILTER

Representing the full quaternion in the filter would lead to
a singularity in the co-variance matrix P, which results in
numerical errors and possibly negative eigenvalues in P,
Shuster (1993).

An intuitive solution is to leave out the scalar element, η,
of the quaternion. Since the quaternion is of unit length,
it can be reconstructed by

q(ε) =

[√
1− ‖ε‖2
ε

]
(4)

With this modification singularities arise at multiples of π.
By only representing the rotation error in the filter, δε, the
singularities are less likely to occur. Error representations
with better margins are described by Markley et al. (2003),
which should be considered for a robust implementation.
The resulting state vector, x = [δε ; b] maintains the error
of each update, and the gyro bias estimate.

Update q̄(k)→ q̂(k)

Error est. δq(k) =

[
δη
δε

]
= q̂−1(k)⊗ qref (k)

Innovation ∆x = K δε

State update q̂(k) = q
(
x[1:3](k)

)
⊗ q̄(k)

Reset x[1:3] = 0

Table 1. Details of the MEKF State update,
q̄(k) is the prediction and q̂(k) is the posterior.

The essence of the MEKF is how the state update is
performed by quaternion multiplication. The error is cal-
culated relative to the QUEST position estimate, and is
represented by its vectorial part ε. This allows the three
dimensional error representation to construct the Kalman
matrices, P, K and H without singularities. The details
of the MEKF update in discrete time is shown in Table 1.

The full singularity free unit quaternion represent the
attitude estimate and is used in the nonlinear state prop-
agation, through the kinematic equation (3), discretized
by Euler’s method Crassidis et al. (2007); Markley et al.
(2003); Lefferts et al. (1982); Shuster (2009).

4. THE EXPLICIT COMPLEMENTARY FILTER

The Explicit Complementary Filter described by Mahony
et al. (2008), for magnetometer and accelerometer input
can be presented as:



σ = ka (ab × âb) + km (mb × m̂b) (5a)

˙̂q =
1

2
q̂⊗

[
0

ωgyro − b̂ + kpσ

]
(5b)

˙̂
b = −kIσ (5c)

Where σ is the filter correction term, and k[p,I,a,m] are
the gains for correction, bias integration and weights on
accelerometer and magnetometer measurements. The ref-
erence vectors âb and m̂b are found by rotating the refer-
ence in NED frame by the transposed rotation estimate,

R(q)
T

.

âb = R(q̂)Tai/|ai|, m̂b = R(q̂)Tmi/|mi| (6)

The magnetometer can have large influx of noise, espe-
cially in vehicles with electrical motors. This problem is
well known and different solutions are proposed in litera-
ture.

To minimize the impact of this it is possible to reduce
the weighting of the magnetometer in periods with high
noise on the magnetometer,(Mahony et al., 2008). With
more permanent noise on the magnetometer one can limit
its effect to only the yaw rotation, (Martin and Salaun,
2010). This can be done by aligning the magnetometer
cross product with the measured accelerometer vector,
changing equation (5a) to:

σm = ka (ab × âb) + km

(
(mb × m̂b)

T
ab

)
ab (7)

Local exponential stability can be shown with this mod-
ification, but it complicates the analysis for region of at-
traction, (Martin and Salaun, 2010). Hua (2010) confirms
the insulation of magnetic perturbations from roll and
pitch in simulations, and do comparisons with the update
in equation (5a). A price to pay for this modification, is
increased error amplitude from accelerations.

5. HARDWARE

The implementation of the filter algorithms investigated
has been done on the AHRS CHR-6dm by CH Robotics,
and benchmarked towards the Microstrain 3DM-GX3-25
ARHS.

The two sensors have been aligned and mounted to an alu-
minum bar, with double-sided tape, to minimize magnetic
disturbances.

The CHR-6dm AHRS was chosen because of its Open
Source firmware, potent ARM Cortex-M3 processor and
its low cost. The individual sensors are surface mounted
to the PCB, as seen in Figure 2. The accelerometers and
gyros are mounted in agreement with the BODY-frame,
whereas the magnetometer is constructed with the z-axis
pointing up, which result in the following rotation from
the magnetometer instrument frame:

mb = Ri
bmi = [my mx −mz]

T
i (8)

The gyro and accelerometers are analog devices, sampled
by an AD-converter at 400Hz. The magnetometer is con-
nected over the I2C bus, and reports it’s measurements at
87Hz.

Fig. 2. The components of the CHR-6dm are: 1. Mi-
crocontroller, STM32F103T8 2. Gyro Pitch-Roll,
LPR510AHL 3. Magnetometer, HMC5843 4. Ac-
celerometer, ADXL335 5. Gyro Yaw, LY510AHL 6.
3.3V Voltage regulator

The gyro bias, b, was measured on several devices, and
in various temperatures. The bias values varied in tests in
the range of 0.004 to 0.120 rad/s.

The magnetometer measurements are corrected both by
a scaling factor and a constant bias, calculated from an
initial calibration routine.

6. FIRMWARE DEVELOPMENT

The algorithms for attitude estimation have been devel-
oped by first prototyping the algorithms in Matlab with
recorded data, then implemented in C both on the PC and
then on the microcontroller. The filter parameters were
tuned in the Matlab filter prototypes using recorded sensor
data.

The QUEST algorithm was implemented on the basis of
Shuster (2006) and the flow chart in Takahashi et al.
(2009), for two input vectors. Further details on this can
be found in Utstumo (2011).

The MEKF was implemented with QUEST as a prepro-
cessor as described in Mahony et al. (2008). The detailed
steps of the algorithm are shown in Table 2. The covariance
matrix, P, is treated by its block-diagonal elements, Pa,
Pb, and the correlation blocks Pc. This further enables us
to exploit the simple form of H to simplify the covariance
propagation and reduce the number of matrix operations,
as described by Markley et al. (2003).

The covariance matrix returned from the QUEST-algorithm
is presented directly to the Kalman filter as the measure-
ment covariance matrix, R. The P matrix is set initially
large on the error estimate, Pa(0) = diag(100), to quickly
converge to the correct attitude, while the initial bias esti-
mate dynamics are limited by setting, Pb(0) = diag(0.1).

The time step, ∆t, is calculated between each step by using
the internal timer TIM3 on the microcontroller.

The Explicit Complementary filter is expressed in three
equations (5), and those three equations are implemented



Step Equations

Update step (87 Hz)

Quest [qq ,Rq ](k) =QUEST(an, mn, ab, mb, σa, σm)

Kalman gain K(k) =

[
P̄a

P̄c

]T
[P̄a + Rq ]−1

P update P̂(k) =P̄(k)−K(k)[P̄a P̄c]

Error estimate δq(k) =q̄′(k)⊗ qq(k)

Innovation x̂(k) =x̄(k) + K(k) δεb

State update q̂(k) =q̄(k)⊗
[√

1− |x̂[1:3](k))|
x̂[1:3](k)

]
Normalize q̂(k) =q̂(k) / |q̂(k)|
Reset x̂[1:3](k) =[0 0 0]T

Propagate (400 Hz)

Propagate state q̄(k + 1) =q̂(k)+ ∆t
2

(
q̂(k)⊗

[
0

ωb − x̂[4:6](k)

])
Linearization F =

[
−[ωb×] −I

0 0

]
, G =

[
−I 0
0 I

]
Propagate P P̄(k + 1) =P̄(k) + ∆t (FP + PF′ + GQG′)

Table 2. The implementation of the MEKF

Step Equations

Update (87Hz) If new magnetometer data

Rotate reference m̂b =R(q̂)Tmn

âb =R(q̂)T an

Correction σm =ka(ab × âb) + km
(
(mb × m̂b)T ab

)
ab

Update δq̂ = 1
2
q̂⊗
[

0
ω − b̂ + kp + σm

]
q̂(+) =q̂(−) + ∆t δq̂

b̂(+) =b̂(−) + ∆t (−kIσm)
Normalize q̂(+) =q̂(+)/|q̂(+)|
Propagate (400Hz) If no new magnetometer data

Propagate ˙̂q = 1
2
q̂⊗
[

0
ω − b̂

]
q̂(+) =q̂(−) + ∆t ˙̂q

Table 3. The Mahony implementation

directly, with some surrounding logic to handle asyn-
chronous updates, and correction of numerical drift on
the quaternion. With the magnetic noise in mind, the
implementation has been adapted to use the update (7)
from Martin and Salaun (2010). The detailed steps of the
algorithm are shown in Table 3.

A significant part of the filter implementation is the sup-
porting libraries to handle matrix, vector and quaternion
operations in 32 bit floating point precision. We have cho-
sen to write the methods specific for each matrix dimen-
sion, eliminating the overhead accompanied with generic
functions supporting arbitrary length vectors.

7. EVALUATION

The hardware implementation has been tested with the
QUEST algorithm, MEKF and The Explicit Complemen-
tary Filter. And the run-time of each algoritm has been
recorded. The timer TIM4 was set up specifically to time
the algorithms, with a clock resolution of 1 µs. The results
are shown in Table 4. Note that this is only timing the
algorithm run time, excluding the time spent fetching the
measurement from the sensors.

Algorithm Propagate [µs] Update [µs]

MEKF 1 337 5 580
QUEST, (part of MEKF) 571
Explicit Complimentary Filter 92 376

Table 4. Execution time of the algorithms

To evaluate the accuracy and estimation performance of
the sensor, it has been manually aligned and mounted
together with the Microstrain 3DM-GX3, see Figure 3.

7.1 Runtime

Our QUEST implementation runs at 571 µs. Directly
comparable results have been published earlier by Taka-
hashi et al. (2009), where two processors are compared
at 24MHz. Execution time for the ARM Cortex M3 at
72MHz in 32 bit precision is reported to 2444 µs. The large
discrepancy in execution time may be due to the custom
3x3 matrix math library, differences in timing, including,
or not, the time taken to read and decimate sensors, or
communicate data.

The execution time of the Multiplicative Extended Kalman
Filter is slow in comparison, and we cannot uphold a
constant output rate of 400 Hz through the update.

The Mahony non-linear observer, on the other hand is
more than 10 times faster, which leave runtime for aux-
iliary tasks such as communication etc.

7.2 Benchmarking towards the 3DM-GX3

Fig. 3. This setup is used to test the step-response and ac-
curacy of the yaw estimate. The filter is benchmarked
towards the known movement, as well as the reference
Microstrain 3DM-GX3 sensor.

The relative high-grade MEMS sensor by Microstrain was
used as a benchmark in this project. To be able to compare
the MEKF and Mahony filters on the same data-sets, the
AHRS was set up to output raw sensor measurements. The
algorithms have then been run in Matlab on the logged
data. This also facilitates the process of tuning the filters.

To test the accuracy of the algorithms, a level plate was
attached by double-sided tape to a table, Figure 3. The
plate was assured level by using a hand level tool, and
directed north as reported by the Microstrain sensor.
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Fig. 4. Accuracy test for Yaw-angle, the lines in the Yaw
plot are drawn at nπ/6.

Three test sequences were performed: One for yaw accu-
racy and one for roll and pitch, where the sensor was moved
in steps to test transient response and absolute accuracy.
The last test was in free hand motion with smoother
motions.

7.3 Yaw accuracy

In Figure 4 the filters output is shown. There are several
interesting features in these plots. Please note that the
y-axis range on Roll and Pitch is ±8.6◦.

The pitch estimate shows how a small positive bias on the
accelerometer y-axis directly affects the Explicit Comple-
mentary filter, with the modified update (7). The mag-
netometer readings are discarded from the pitch and roll
updates, and the filter then solely rely on the accelerome-
ter.

The MEKF on the other hand, uses the QUEST algorithm
with near equal weights on the two measurements. As
the two vector measurements conflict, QUEST alternates
between trusting the magnetometer, or the accelerometer
the most.

This is a desirable trait to the QUEST algorithm, and the
pure Mahony update would rather have output a weighted
average between the two.

Further, notice that the transients caused by the abrupt
stop and go motion affect the two sensor nearly the
same. This is an effect of the accelerometer measurement
swinging out when rotating the sensor in a stop-and-go
fashion.
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Fig. 5. Accuracy test for Roll and Pitch angle.

In the first part of the Yaw plot, the three lines follow
closely, and the Microstrain slightly underestimate the
rotation which was performed in three steps to ±π/2. In
the latter part of the graph, the Microstrain display better
performance under fast dynamics, where the two filters on
the AHRS data first underestimate the rotation, but slowly
swing in to near correct levels.

7.4 Roll and pitch accuracy

The deviation in Figure 5 is mostly due to a combination
of non-perfect alignment of the two sensors, and differences
in how the magnetic field is measured.

The filters also show excellent accuracy in estimating the
roll and pitch angles when the gravitation vector is aligned
with a measurement vector. At 170s the Euler conversion
experience near-gimbal-lock conditions, and the Roll and
Yaw measurements does not represent the physical motion.

7.5 Hand held

The dataset shown in Figure 6 was recorded by freely
holding the sensor-block, and moving it around. In con-
trast to the Yaw Accuracy test, the Microstrain now show
an higher amplitude in yaw rotation. Otherwise the filters
display very similar dynamics, where the MEKF is the
most conservative one.

At approximately 52 seconds, the Microstrain Euler con-
version experience a gimbal lock, and spin both the Roll
and Pitch angle 360◦, a mathematical artifact in the con-
version to Euler angles.
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Fig. 6. The filters under controlled hand motion.

8. RESULTS

We have demonstrated the implementation of the QUEST
algorithm, the much implemented Multiplicative EKF and
a non-linear observer, the Explicit Complimentary Filter.

The algorithms have been implemented on the CHR-6dm,
where most of the firmware has been re-engineered to
better accompany the filters. The implemented algorithms
have been analysed by run-time on the microprocessor.
The QUEST algorithm runs at 571 µs, which is four
times faster than a previously published implementation
Takahashi et al. (2009), on nearly the same processor.

The Mahony non-linear estimator demonstrate its compu-
tational advantage, by running more than ten times faster
than the MEKF.

By comparing the algorithms with a relative high-grade
sensor, the usability and accuracy of the filters have been
positively indicated.

9. CONCLUSION

The implementation, and run-time results of the MEKF
and the Mahony non-linear observer illustrate clearly the
relative computational cost of Kalman filters to non-
linear observer designs. Whereas relatively cheap micro-
controllers are fully capable of running a MEKF filter, the
chosen non-linear observer run ten times faster.

The Extended Kalman filter design provides few obvi-
ous advantages, besides being the industry standard for
decades. Non-linear observers may be more demanding in

design, but provide attractive stability properties and the
implementation in code is significantly more lightweight
and transparent. This in turn leave less room for software
bugs and facilitate test and verification.

For our agricultural robotic attitude estimation, the ex-
plicit complementary filter is preferred over a Kalman
based design. And we focus on applying observers which
also incorporate heading estimates from the forward mo-
tion measured by GPS to improve absolute accuracy.
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