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Abstract— The ability to track periodic reference trajectory
signals fast and with good accuracy, is highly required in many
different nanopositioning applications. Since different factors
can affect the performance of such devices, like lightly damped
resonances and actuator nonlinearties including hysteresis and
creep, a number of control schemes have been presented in or-
der to overcome these difficulties, in the recent literature. In the
present paper a nonlinear feedback controller is proposed that
includes both force and tracking control of a nanopositioner.
The nonlinear controller is an augmentation of a linear integral
force controller where the constant gain used in the integral
force feedback, is replaced by a passive nonlinear operator.
The nonlinear control law provides improved performance with
regards to disturbance rejection and vibration damping over the
linear control law. In addition, a feedback component is added.
The stability of the overall closed loop system is analysed using
the multivariable Popov criterion.

I. INTRODUCTION

Nanodevices have been in the center of attention in
the recent decades, because of their ability to be used
in numerous applications in different scientific fields like
biology, chemistry, materials science, and physics [1]. A
typical application that nanopositioning devices are used for,
is high resolution positioning. This, includes scanning probe
microscopy (SPM) [2], [3], for both manipulation [4] and
interrogation [5] at the nanometer scale.

Scanning probe microscopy requires one or more position-
ers to physically position the probe in space [6]. As such,
high performance motion control is required. The motion can
be generated using e.g. piezoelectric actuators [7], [8], elec-
trostatic comb drives [9], or voice coil actuators [10], [11]. It
is quite common for positioner designs to have high stiffness
materials and as a result the positioner experiences little
structural damping and in addition lightly damped vibrational
modes. As a result, limitation of the bandwidth occurs since
reference signals with high frequency components will excite
the vibration modes. This is one of the main problems that
can lead to non-accurate positioning. In addition, several
other sources exist that introduce an uncertainty in the
dynamic response of such systems. Nanopositioners are also
susceptible to environmental disturbances, such as sound and
floor vibrations. The list can get longer by adding uncertain-
ties like hysteresis, and creep, that are loss-phenomena that
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prevent the linear response. This will, in effect, introduce
bounded disturbances dependent on the driving voltage [1].

For known signals, the effect of mechanical vibrations can
be reduced by the application of different control techniques.
Different techniques have been applied so far and even the
simple application of feedforward controllers can lead to
the desired results [12]. However, feedback control is more
desirable since it is has been be proven to be more efficient in
reducing the sensitivity to unknown disturbances [13],[14].
Amongst the proposed feedback schemes that have been
presented so far, one can find positive position feedback
techniques [15], integral force feedback [16], passive shunt-
damping [17], resonant control [18] and integral resonant
control [19]. When it comes to nanoposition applications
specifically, positive position feedback and resonant control
has been applied in [20], integral force feedback in [21],
passive shunt-damping in [22], [23], and integral resonant
control in [24]. The main characteristics of these techniques
are their simplicity in implementation and their robustness
towards plant uncertainties and system nonlinearities.

The large majority of controllers proposed for nanopo-
sitioning systems in literature has been linear controllers
based on linear models. However, linear control laws in
have limitations to the achievable performance [25]. For
a single-input-single-output system, this is perhaps most
noticeable from the limitations imposed by the Bode sensi-
tivity integral [26].In [27] a nonlinear control approach was
proposed in order to obtain performance improvement. In
particular, the proposed control law replaces the constant
gain controller that was previously presented by [16] with
a passive nonlinear operator which includes a second-order
term. The nonlinear control law improves the performance
of the integral force feedback as it provides more rapid
suppression of large disturbances, while maintaining low
noise sensitivity, since the second-order term only provides
high gain for large error signals. The stability properties of
the closed loop system can be established using the theory
of passivity [28].

In the present article this approach is taken a step forwards.
Reference trajectory planning is applied for the closed loop
system presented in [27] [13], [29]. Furthermore, we extend
the control scheme applied in [27] with an extra feedback
for displacement. As a result, a new closed loop system
is derived for which tracking control is achieved using a
feedforward control scheme. The stability of the closed loop
system is analysed using of the multivariable Popov criterion
as presented in [30], [31].

The paper is structured as follows: In Section II the
nanopositioning system and the mathematical model is pre-



sented. Section III presents the control scheme proposed, and
Section IV theoretical proof of the stability of the control
scheme. Finally in Section V simulation results are presented.

II. SYSTEM DESCRIPTION AND MODELLING

A. Description of the Experimental System

The overall applied nonlinear control law, is designed for
the custom-made long-range serial-kinematic nanopositioner
as presented in Fig. 1 [27]. The displacement is generated
with a use of a piezoelectric actuator. Such actuators gen-
erate a force proportional to an applied voltage [33]. The
piezoelectric actuator applies and external force fa (N) the
is equal to:

fa = eau , (1)

where ea (N V−1 = C N−1) is the effective gain of the
piezoelectric actuator from voltage to force, and u (V) is the
applied voltage.

The dynamics of the structure due to an externally applied
input voltage u for a point d (m) on the flexible structure, as
observed by a co-located sensor, is adequately described by
the following lumped parameter, truncated linear model [34],

Gd(s) = ea
yd
fa

(s) ≈
nd∑
i=1

βi
s2 + 2ζiωis+ ωi

2
+Dr (2)

nd is the number of vibrational modes included. The other
parameters are: {βi} (m s−2 V−1) the control gains, {ζi}
the damping coefficients for each mode, and {ωi} (rad s−1)
the natural frequencies for the modes. The term Dr (m V−1)
is the residual mode, which is an approximation of the non-
modeled higher frequency modes, and can be included to
improve prediction of zero-locations. The addition of Dr

produces a model that is not strictly proper, but as the
instrumentation, such as the amplifier and sensors, have
limited bandwidth, Dr can be considered equal to zero for
this system.

The integral force feedback controller scheme utilizes a
co-located piezoelectric force transducer. The force trans-
ducer generates a charge, depending on the applied force.
The current or charge produced by the force transducer is
typically converted to a voltage signal using a simple op-
amp circuit with a high input impedance. The output voltage
from such a sensor when measuring the charge, can be found
to be [21], [34]

yf = ks(kau− yd) ,

where yd is the displacement of the mechanical structure, u
is the applied voltage to the actuator, ka (m V−1) is the gain
of the feed-through term, and ks (V m−1) is the sensor gain.
The transfer-function from applied voltage ua to measured
sensor voltage vf can therefore be found as

Gf (s) =
yf
u

(s) = ks(ka −Gd(s)) . (3)

For the displacement model (2), only the dominant vibra-
tion mode is included, i.e. nd = 1. The dominant piston
mode occurs at 1680 Hz.

Fig. 1: Custom flexure-guided nanopositioning stage.

TABLE I: Identified model parameters.

Displacement model (2)
β1 2.00 · 106 µm s−2 V−1

ζ1 0.0196

ω1 2π · 1680 rad s−1

Force model (3)
ks 0.00197 V µm−1

ka 0.0253 µm V−1

III. CONTROL SCHEMES

A. Integral Force Feedback and Nonlinear Control Schemes

Integral force feedback (IFF) was introduced in [16], and
has successfully been applied to a nanopositioning device
in [21]. An advantage of using this scheme, is that a
piezoelectric force transducer typically has an extremely low
noise density, compared to many other sensors [21]. The
control law is also simple to tune and implement, and pro-
vides damping for several vibration modes simultaneously.
Assuming sensor-actuator co-location, it provides robust L2-
stability.

The basic implementation of the control scheme is shown
in Fig. 2a. Here

Φ = k2

and the IFF control scheme is therefore equivalent of the
integral control law on the form

C(s) =
k2

s
, (4)

where k2 is the control law gain.
The methodology for optimally tuning the linear gain k2

is elaborately explained in [21], [35].
Linear control laws in general have limitations to the

achievable performance [25]. For a single-input-single-output
system, this is perhaps most noticeable from the limitations
imposed by the Bode sensitivity integral [26]. For the IFF
scheme, performance depends on the tuning for the gain
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Fig. 2: Block diagrams for closed-loop system.

k2. There is one optimal value for the gain k2 that provide
maximum damping. Choosing other values for k2 results in
either a larger overshoot, a longer convergence envelope, or
both. In order to improve the performance of the IFF scheme,
a nonlinear augmentation was proposed in [36]. In the
nonlinear case, a gain proportional to the force measurement
is added to the constant gain k2. The controller analysis is
taking place in [27] and Fig. 2b presents the designed archi-
tecture. With reference to Fig. 2b the equations describing
the nonlinear controller are presented in the following:

Φ = K

where

K = sat(k1|yf |, L) + k2, L, k1, k2 > 0 (5)

and
sat(x, L) =

{
x, |x| < L

L sgn(x), |x| ≥ L .

B. Feedforward Controller Design

In the present paper a tracking nonlinear controller is
presented. Figure 2b, shows the block diagram of the control
system to be applied. Therefore, we need to apply both a
feedforward and a feedback term as it is presented in Figure
2c. The feedforward term is added in order to move the sys-
tem to the desired point, an equilibrium point of the system,
and the feedback controller to handle the deviation around
it. The concept of the design of the feedforward controller
is that the overall gain of the closed loop system is equal
to one. The mathematicalrepresentation of the feedforward
controller input is equal to:

uF = G−1
d r +

1

s
ΦGfG

−1
d r +

1

s
ΦCi(r − yd)− 1

s
Φyf (6)

.
By the assumption that the system model is known with

high accuracy, Gf and Gd are equal to the feedforward
transfer functions Gf and Gd. The previous equation is used
as the feed forward controller of the system.

C. Closed Loop System Reformulation

The stability of the closed-loop system, and hence the
tracking ability of the system can be analysed using the
multivariable Popov criterion. The application of the Popov
criterion requires that the system is in its state space
representation. The, system Equations (2) and (3) can be
transformed to:

yd = y1 = x1 (7)
yf = y2 = −ksx1 + kskau (8)[

ẋ1

ẋ2

]
=

[
0 1
−ω1

2 −2ζ1ω1

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
0
β1

]
︸︷︷︸

B

u (9)

[
y1

y2

]
=

[
1 0
−ks 0

]
︸ ︷︷ ︸

C

[
x1

x2

]
+

[
0

kska

]
︸ ︷︷ ︸

D

u (10)

1) Case 1: Feedback from force and displacement:
Defining u1 as disturbance input, and u2 as input to the linear
controller integrator, the open loop state space description is
equal to:ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

ẋ

=

 0 1 0
−ω1

2 −2ζ1ω1 β1

0 0 0


︸ ︷︷ ︸

A1

x1

x2

x3

+

 0 0
β1 0
0 1


︸ ︷︷ ︸

B1

[
u1

u2

]

(11)[
y

1
y

2

]
︸︷︷︸

y

=

[
1 0 0
−ks 0 kska

]
︸ ︷︷ ︸

C1

x1

x2

x3


︸ ︷︷ ︸

x

+

[
0 0

kska 0

]
︸ ︷︷ ︸

D1

[
u1

u2

]
︸︷︷ ︸

u

(12)



And therefore the feedback representation with the use of
the linear integral controller is:

K1 =

[
0 0
0 k2

]
, L1 =

[
1

−k2kska

]

u = −K1y + L1r (13)

ẋ = (A1 −B1K1C1)x+B1L1r

y = (C1 −D1K1C1)x+D1L1r

In this case r will function as the disturbance input.

u1 =

[
r

−k2y2

]
=

[
r

k2ksx1 − k2kskax3 − k2kskar

]
ẋ1

ẋ2

ẋ3

 =

 0 1 0
−ω1

2 −2ζ1ω1 β1

k2ks 0 −k2kska

x1

x2

x3

+

 0
β0

−k2kska

 r
[
y

1
y

2

]
=

[
1 0 0
−ks 0 kska

]x1

x2

x3

+

[
0

kska

]
r

2) Case 2: Linear force and integral position feedback:
When the force feedback controller is added with the com-
bination of the integral position feedback, if only the linear
case is studied the state space representation of the open
loop model will be examined with a1 = ω1

2, a1 = 2ζ1ω1.
Then, ū1 is the first input to integrator x̄3, and ū2 is the
second input to integrator x̄3. Let us define ū3 as the input
to integrator x̄4 (reference input). No disturbance input is
considered at this case.


˙̄x1

˙̄x2

˙̄x3

˙̄x4


︸ ︷︷ ︸

˙̄x

=


0 1 0 0
−a0 −a1 β0 0

0 0 0 0
−1 0 0 0


︸ ︷︷ ︸

Ā


x̄1

x̄2

x̄3

x̄4


︸ ︷︷ ︸

x̄

+


0 0 0
0 0 0
1 −1 0
0 0 1


︸ ︷︷ ︸

B̄

ū1

ū2

ū3


︸ ︷︷ ︸

ū

ȳ1

ȳ2

ȳ3


︸ ︷︷ ︸

ȳ

=

 1 0 0 0
−ks 0 kska 0

0 0 0 1


︸ ︷︷ ︸

C̄


x̄1

x̄2

x̄3

x̄4

+

0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

D̄

ū1

ū2

ū3



In this case, ȳ1 is the displacement, and ȳ2 is the force.
The output ȳ3 is the integral of the displacement.

K2 =

0 k2 0
0 0 k1

0 0 0

 , L2 =

0
0
1



ū = −K2ȳ + L2r =

−k2ȳ2

−k1ȳ3

r

 =

k2ksx̄1 − k2kskax̄3

−k1x̄4

r




˙̄x1

˙̄x2

˙̄x3

˙̄x4

 =


0 1 0 0
−a0 −a1 β0 0
k2ks 0 −k2kska k1

−1 0 0 0


︸ ︷︷ ︸

Ācl


x̄1

x̄2

x̄3

x̄4

+


0
0
0
1


︸︷︷︸
B̄cl

r

(14)ȳ1

ȳ2

ȳ3

 =

 1 0 0 0
−ks 0 kska 0

0 0 0 1


︸ ︷︷ ︸

C̄cl


x̄1

x̄2

x̄3

x̄4

+

0
0
0


︸︷︷︸
D̄cl

r (15)

3) Case 3: Nonlinear force and integral position feedback:
The final closed loop system as presented in Figure 2 will be
presented in this case. The application of the Popov criterion
requires that, D̄cl = 0. The system formulation of the Lure
problem when using the Popov criterion is equal to:

ẋp = Apxp +Bpup

yp = Cpxp

up = −Φ(yp)

where up = −Φ(yp) satisfies upi = −ϕi(ypi), i = 1, 2.
˙̃x1

˙̃x2

˙̃x3

˙̃x4


︸ ︷︷ ︸

x̃

=


0 1 0 0
−a0 −a1 β0 0

0 0 0 0
−1 0 0 0


︸ ︷︷ ︸

Ā


x̃1

x̃2

x̃3

x̃4

+


0 0
0 0
1 −1
0 0


︸ ︷︷ ︸

B̃

[
ū1

ū2

]
︸︷︷ ︸

ũ

[
y1

y2

]
︸︷︷︸

ỹ

=

[
−ks 0 kska 0

0 0 0 1

]
︸ ︷︷ ︸

C̃


x̃1

x̃2

x̃3

x̃4


The input vector is now defined using the nonlinearity in (5).

ũ = −K̃ỹ−Φ(ỹ) =

[
−k2y1 − ϕ1(y1)
−k1y2 − ϕ2(y2)

]
=

[
−k2y1

−k1y2

]
−Φ(ỹ)

with ũ = −Φ(ỹ) and

K̃ =

[
k2 0
0 k1

]
The closed loop system used for analysis is described by:

˙̃x1
˙̃x2
˙̃x3
˙̃x4

 =

 0 1 0 0
−a0 −a1 β0 0
k2ks 0 −k2kska k1
−1 0 0 0


︸ ︷︷ ︸

Acl

x̃1x̃2x̃3
x̃4

+

0 0
0 0
1 −1
0 0


︸ ︷︷ ︸

Bcl

[
ū1

ū2

]

(16)[
y1

y2

]
=

[
−ks 0 kska 0

0 0 0 1

]
︸ ︷︷ ︸

Ccl


x̃1

x̃2

x̃3

x̃4

 (17)

ũ = −Φ(ỹ) =

[
ū1

ū2

]
= −

[
ϕ1(y1)
ϕ2(y2)

]
(18)



IV. STABILITY ANALYSIS

The stability of the closed loop system presented above, is
studied with the use of the multivariable Popov criterion [30],
[31]. The closed loop system described has two different
parts, a linear presented in Equations (16-17), and a nonlinear
described in (18). The linear forward part, is described by a
4 × 4 matrix W (s) of rational transfer functions which are
equal to:

W (s) = Ccl(sI −Acl)Bcl (19)

The feedback in this case is provided by the memo-
ryless nonlinearities ϕi(ỹi), i = 1, 2 = sat((k1|yi|, L) +
k2)yi, L, k1, k2 > 0, i = 1, 2.

The closed loop system described in Equations (16-18) is
stable and the stability proof is given below with the use of
Multivariable Popov Criterion [30], [31]. The requirements
that need to hold, in order for the system to be stable are:

Popov Criterion Requirements 1:
1) The W(s) matrix of the rational transfer functions

needs to be stable.
2) The memoryless nonlinearities need to satisfy the

equations 0 ≤ ϕi(ỹi)ỹi ≤ kiỹ2
i , i = 1, 2

3) There exist diagonal matrices Â = diag{a1, a2}, B̂ =
diag{b1, b2} with ai ≥ 0, bi ≥ 0 i = 1, 2 and −ai/bi
not a pole of any of the ith row elements of W (s), such
that will make the following function positive real:

Z(s) = (Â+ B̂s)W (s)
For the given case, the W (s) matrix as described in

Equation 19 is stable. In addition, the systems nonlinearities
satisfy the property of Input Strict Passivity:

ϕ(yi)yi = sat((k1|(yi)|, L) + k2)y2
i ≥ k2y

2
i

Graphically, the above presented result means that the nonlin-
earity belongs to the sector [k2,∞] . Finally, there exist two
diagonal matrices Â and B̂, so that the Z(s) transfer function
is positive real. Therefore all of the above conditions are
fulfilled and finally, the nonlinear system, (16-18) is stable
and the systems tracking properties are satisfied.

V. SIMULATION RESULTS

A simulation study was performed using the mathematical
model of the nanopositioner stage presented in Section II and
the controller is designed for the second vibrational mode.
The block diagrams of the systems used in the simulations
are the ones that have been presented in Figures 2a, 2b and
2c for the linear, the nonlinear/combined nonlinear cases
and the tracking controller design. The different approaches
are presented in order to show the improvements that are
achieved by the use of the proposed tracking controller
approach. In this case the main objective of the authors is to
show the ability to achieve tracking.

For the case where no tracking controller is implemented
an external excitation signals is used, equal to a square wave
of 100V with a frequency equal to 20Hz. In the case of the

tracking control scheme a triangle wave reference signal of
1 µm.

The results presented in Figs.3 and 4 indicate that the
nonlinear control law provides improved performance with
regards to disturbance rejection and vibration damping over
the linear control law. Fig. 3 shows a reduced overshoot and
a faster settling time for the combined nonlinear control law.
It is interesting to note that the measured force is larger in
the nonlinear case, indicating that the nonlinear control law
produces a larger actuation signal for the same disturbance
compared to the linear control law.
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Fig. 4: Displacement Output for the pure nonlinear and the
combined controller scheme

On the other hand, when the tracking controller is im-
plemented the behaviour of the system changes according
to what it is presented in Figures 6, and 7. Figures 6
present the output and the error of the nanopositioner closed
loop system. From the results, it is shown that the applied
controller leads the system to good tracking results. This is
enforced by the error signal of the system, which clearly
shows that its output follows with great accuracy the input
signal. In addition, Figure 7 presents the measured sensor
voltage output of the nonlinear tracking system as well.
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Fig. 7: Measured sensor voltage output for the tracking
control scheme

VI. CONCLUSIONS

In the present paper, a nonlinear tracking feedback control
scheme is presented for a nanopositioner. The nonlinear
controller is an augmentation of a linear integral force
controller where the constant gain used in the integral force
feedback, is replaced by a passive nonlinear operator. An
advantage of that scheme is that a piezoelevtric force trans-
ducer typically has an extremely low noise density compared
to other sensors. The stability of the overall closed loop
system is analysed with the use of the multivariable Popov
criterion, and the Simulation results prove the accuracy of
the suggested scheme.
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