
On active surge control of compressors using a mass flow
observer

Bjørnar Bøhagen and Jan Tommy Gravdahl
Department of Engineering Cybernetics, NTNU, N-7491 Trondheim, Norway

Abstract

A globally exponentially stable (GES) observer for the
mass flow in a compression system is proposed. Fur-
ther, a previously proposed active surge control scheme
is shown to be GES. This nonlinear control scheme em-
ploys the drive torque of the compressors drive unit as
the control variable in an active surge control system.
The controler is based on feedback from mass flow. It
is desireable to avoid this measurement as it is both
inaccurate and expensive. Using a nonlinear separa-
tion principle, the total system is shown to be globally
asyptotically stable (GAS). The results are supported
by simulations.

1 Background

Towards low mass flows, the stable operating region of
centrifugal compressors is bounded due to the occur-
rence of surge. Surge is an unstable operation mode
of the compressor and the stability boundary in the
compressor map is called the surge line. Surge is char-
acterized by oscillations in pressure rise and mass flow.
These oscillations can cause severe damage to the ma-
chine due to vibrations and high thermal loading re-
sulting from lowered efficiency. Traditionally, surge
has been avoided using surge avoidance schemes. Such
schemes use various measures to keep the operating
point of the compressor away from the surge line. Typ-
ically, a surge control line is drawn at a distance from
the surge line, and the surge avoidance scheme ensures
that the operating point does not cross this line. This
method restricts the operating range of the machine,
and efficiency is limited. Usually a recycle line around
the compressor is used as actuation. Active surge con-
trol is fundamentally different to surge avoidance in
that the unstable phenomenon is sought to be stabi-
lized instead of avoided. Thus the operating regime of
the compressor is enlarged.

Active surge control of compressors was first introduced
by [1], and since then a number of results have been
published. Different actuators have been used, and ex-
amples include recycle, bleed and throttle valves, gas
injection, variable guide vanes and a number of others.
For an overview, consult [2] or [3]. In this work we will
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Figure 1: The compression system considered consists of
a centrifugal compressor driven by an electrical
motor and the control system consists of three
parts: the active surge control law, the mass
flow observer and the performance control.

use the approach of [4] and [5] where it was proposed to
use the drive unit for active surge control as depicted
in Figure 1. The advantage of this approach is that the
drive is already present, and no additional actuation
device is required. This means that the compressor can
be operated at a low flow without recycling, and there
is a potential for reduced energy consumption of the
compressor.

The controller of [4] was based on feedback from ro-
tational speed and mass flow. It is known that real
time measurement of mass flow is both expensive and
hampered with high noise levels. For this reason we
propose a nonlinear observer for estimation of the mass
flow. This estimate is used for feedback to the active
surge controller.

2 Model

2.1 Dynamics
A classical result in the field of compressor surge mod-
eling is the model of Greitzer [6] who modelled a ba-
sic compression system consisting of a compressor, a
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Figure 2: The compressor, plenum, throttle system of [6]

plenum volume, a throttle valve and in-between duct-
ing as shown in Figure 2. In order to study the drive
torque as control variable for surge control, we need a
model that takes variable speed into account. In [7], the
Greitzer-model was further developed, and rotational
speed was included as a state in the model. A simi-
lar model was derived in [8], using an approach based
on energy based analysis. In this paper we will em-
ploy the compressor model derived in [8]. The model is
derived by calculating the mass balance of the plenum
volume, integrating the one dimensional Euler equa-
tion (the momentum balance) over the length of the
exit duct, and calculating the torque balance of the ro-
tating shaft. The model is written

ṗ =
a201
Vp
(m−mt), (1a)

ṁ =
A1
Lc
(Ψc(m,ω)p01 − p) , (1b)

ω̇ =
1

J
(τd − τ c) , (1c)

where p is the plenum pressure, m is the compressor
mass flow, ω is the rotational velocity of the shaft,
Ψc(m,ω) is the compressor characteristic, mt is the
throttle flow, A1 is the throughflow area, Lc is the duct
length, Vp is the plenum volume, p01 is the ambient
pressure, a01 is the sonic velocity at ambient conditions,
J is the inertia of all rotating parts, and τd and τ c is
the drive torque and compressor load torque, respec-
tively. The throttle flow is given by mt = kt

√
p− p01,

where kt > 0 is a parameter proportional to throttle
opening. The compressor torque τc is calculated as
τ c = |m|r22σω, where r2 is the impeller diameter and
σ is the slip factor. The drive torque τd will be used
as the control variable. For a detailed derivation of the
model, consult [8].

3 Control

In [4] it was shown that previous unstable operating
points to the left of the surge line can be made GES
by using the rotational speed ω of the drive as con-
trol variable. A velocity control scheme for the drive
torque τd was also proposed. This scheme guaranteed

exponential convergence to a region around the desired
operating point. We will extend these results by prov-
ing that the desired operating point can be made GES
also when using the drive torque τd as control. The
equilibrium values representing the desired operating
point are denoted by (·)0, while deviations from the
equilibrium are denoted by (̄·).
Definition 1 (Deviations from equilibrium)

m̄ = m−m0 (2a)

p̄ = p− p0 (2b)

ω̄ = ω − ω0 (2c)

m̄t = kt
√
p− p01 − kt

√
p0 − p01 =mt −mt0(2d)

Ψ̄c = Ψc(m,ω)−Ψc(m0,ω0) = Ψc −Ψc0 (2e)

τ̄c = |m|r22σω − |m0|r22σω0 = τc − τc0 (2f)

τ̄d = τd − τd0. (2g)

The model (1) in new coordinates (̄·) is written

˙̄p =
a201
Vp
(m̄− m̄t), (3a)

˙̄m =
A1
Lc

¡
Ψ̄cp01 − p̄

¢
, (3b)

˙̄ω =
1

J
(τ̄d − τ̄ c) , (3c)

where the equilibrium values satisfies m0 = mt0, p0 =
Ψc0p01 and τd0 = τc0. In [4] it was shown that when
using the control law

ω̄ = −c1m̄ (4)

the equilibrium of (3a)-(3b) is made GES. The Lya-
punov function

V =
Vp
2a201

p̄2 +
Lc
2A1

m̄2 (5)

was used and it was shown that the time derivative
of (5) along the solutions of (3a)-(3b) can be upper
bounded as

V̇ (p̄, m̄) < −kpp̄2 − kmm̄2, (6)

where kp > 0 depends on the slope of the throttle char-
acteristic and km > 0 depends on the slope of the com-
pressor characteristic. In (4) the shaft speed is used
as control variable. This approach requires a velocity
controller for the drive in order to achieve and maintain
the speed described by (4), without corrupting the sta-
bility guaranteed by this control law. From (4) it can
be recognized that the desired shaft speed is given by

ωd = ω0 − c1m̄.
In [4] the velocity control law

τ̄d = K1 (ωd − ω) = −K1ω̄ −K1c1m̄ = −K1ω̄ −K2m̄,
where

K2 = K1c1

was proposed and exponential convergence was proved.



Proposition 1 (GES equilibrium)
The dynamics (3) in closed loop with the surge control
law

τ̄d = −K1ω̄ −K2m̄ (7)

where the gain c1 is chosen according to

c1 > sup

µ
∂Ψc/∂m

∂Ψc/∂ω

¶
(8)

and the gain K2 is chosen according to

K2 = K1c1 (9)

makes the origin of (3) globally exponentially stable

Proof: Consider the Lyapunov function candidate

V1(p̄, m̄, ω̄) =
Vp
2a201

p̄2 +
Lc
2A1

m̄2 +
J

2
ω̄2. (10)

Using (5) and (6), the time derivative of (10) along the
solutions of (3) can be written

V̇1 < −kpp̄2 − kmm̄2 + Jω̄ ˙̄ω

< −kpp̄2 − kmm̄2 + ω̄ (τ̄d − τ̄ c)

< −kpp̄2 − kmm̄2 + ω̄ (−K1ω̄ −K2m̄)− ω̄τ̄ c

< −kpp̄2 − kmm̄2 −K1ω̄2 −K2m̄ω̄ − ω̄τ̄ c.(11)

The compressor load torque and the shaft rotational
velovity are assumed to be a passive pair such that
Pc = ω̄τ̄c ≥ 0, where Pc is the power consumed by
the compressor load. Further, the m̄ω̄-term in (11) can
be upper bounded using Young’s inequality

−K2m̄ω̄ ≤ K2
η1
m̄2 +K2η1ω̄

2, (12)

where η1 > 0. An upper bound on (11) can now be
found as

V̇1 < −kpp̄2 − (km − K2
η1
)m̄2 − (K1 −K2η1)ω̄2.

Choosing K1, K2 and η1 such that the inequalities

k1 <
2kpVp
a201

k1 <
2
³
km − K2

η1

´
Lc

A1
k1 < 2 (K1 −K2η1) J

holds for k1 > 0, makes the origin of (3) globally expo-
nentially stable. That is, V1(p̄, m̄, ω̄) is positive definite
and radially unbounded and its time derivative along
the solutions of (3) satisfies

V̇1(p̄, m̄, ω̄) < −k1V1(p̄, m̄, ω̄).

4 Observer

Due to the practical difficulties of implementing a con-
troller that depends on feedback from mass flow, we
now propose a GES observer for mass flow. The esti-
mated state is denoted by (̂·), while estimation error is
denoted by (̃·)

Definition 2 (Estimation error)

m̃ = m− m̂
Ψ̃c = Ψc − Ψ̂c = Ψc(m,ω)−Ψc(m̂,ω).

The observer dynamics are constructed by copying (1b)
and and are given by

˙̂m =
A1
Lc

³
Ψ̂cp01 − p

´
+Km̃m̃, (14)

where Km̃ = A1
Lc
c2 is the observer gain, and c2 is a

tuning parameter for the observer. Notice that (14)
depends on the unmeasured state m. Following [9] this
is handled by introducing the new variable

z = m̂−Kzp,
where Kz =

Vp
a201

A1
Lc
c2. The observer can now be imple-

mented as

ż =
A1
Lc

³
Ψ̂cp01 − p− c2m̂− c2mt

´
, (15a)

m̂ = z +Kzp, (15b)

where it can be seen that the observer uses measure-
ments of ω and p only. The observer error dynamics
are now given by

˙̃m = ṁ− ˙̂m

=
A1
Lc
(Ψcp01 − p)− A1

Lc

³
Ψ̂cp01 − p

´
− A1
Lc
c2m̃

=
A1
Lc

³
Ψ̃cp01 − c2m̃

´
. (16)

Proposition 2 (GES observer)
The observer error dynamics

˙̃m =
A1
Lc

³
Ψ̃cp01 − c2m̃

´
is GES if the observer gain, c2 is chosen according to

c2 > 2p01 sup

½
∂Ψc
∂m

¾
+ δ2, (17)

where δ2 > 0.

Proof: Consider the Lyapunov function candidate

V2(m̃) =
Lc
2A1

m̃2 (18)



The time derivative of (18) along the solution of (16) is

V̇2(m̃) = m̃
³
Ψ̃cp01 − c2m̃

´
= m̃α(m̃) (19)

where α(m̃) = Ψ̃cp01−c2m̃. In order to prove stability,
we now have to show that m̃α(m̃) < 0 for all m̃ 6= 0.
If it can be proven that α(m̃) is located in the 2nd
and 4th quadrant of the (m̃,α(m̃))-coordinate system,
then m̃α(m̃) < 0 since m̃ is located in the 1st and
3rd quadrant. As α(0) = 0, where it has been used
that Ψ̃c|m̃=0 = 0, a sufficient condition for α(m̃) to be
located in the 2nd and 4th quadrant is that α(m̃) is
monotonically decreasing in m̃, that is

∂α(m̃)

∂m̃
< 0. (20)

Calculating the partial derivative

∂α(m̃)

∂m̃
=

∂Ψ̃c
∂m̃

p01 − c2 ∂m̃
∂m̃

=
∂Ψc
∂m̃

p01 − ∂Ψ̂c
∂m̃

p01 − c2

=
∂Ψc
∂m

∂m

∂m̃
p01 − ∂Ψ̂c

∂m̂

∂m̂

∂m̃
p01 − c2

=
∂Ψc
∂m

p01 +
∂Ψ̂c
∂m̂

p01 − c2

it can be recognized that (20) is satisfied if c2 is chosen
according to

c2 > sup

(
∂Ψc
∂m

+
∂Ψ̂c
∂m̂

)
p01+δ2 = 2p01 sup

½
∂Ψc
∂m

¾
+δ2,

(21)
where δ2 > 0. Using (21) we can now write (19) as

V̇2(m̃) < −δ2m̃2 < −2δ2A1
Lc
V2 (m̃) ,

which implies that the origin of (16) is globally expo-
nentially stable. That is V2(m̃) is positive definite and
radially unbound and the time derivative along the so-
lutions of (16) can be written

V̇2(m̃) < −k2V2(m̃),
where k2 = 2δ2A1Lc .

Remark 1 It is interesting to notice that the analysis
that follows from using the stabilizing term −c2m̃2 in
(19) is equivalent to the stability analysis when using
a closed coupled valve (CCV) for active surge control.
This can e.g. be seen in [2].

5 Stability of overall system

In this section we investigate the stability of the overall
system when the estimate, m̂, of the mass flow, m, is

used in the feedback controller (7). To prove stability
of the cascaded system, we will use the methodology
of [10] which allows for tuning of the controller and
the estimator separately. In [10] stability conditions
for non-autonomous nonlinear systems in cascade are
given. Our approach is inspired by [11]. For stabil-
ity results for autonomous nonlinear cascaded systems
using passivity properties, the reader is referred to [12].

Theorem 3 (GAS Output Feedback)
The controller

τ̄d = −K1ω̄ −K2 (m̂−m0) (22)

where the controller gains, K1 and K2, are chosen
accoding to Proposition 1, the estimate, m̂, is imple-
mented according to (15) and the observer gain, c2, is
chosen according to Propsition 2, makes the origin of
(3) GAS.

Proof: Theorem 3 will be proved by showing that the
cascaded system satisfies the assumtion of Theorem 2
in [10]. Following the notations of [10] we consider the
cascade

Σ1 : ẋ1 = f1(x1) + g(x)x2

Σ2 : ẋ2 = f2(x2)

where Σ1 represents (3) using the control law (22), Σ2
represents the observer error dynamics in Proposition
2 with c2 chosen according to (17), and

x1 =

 p̄
m̄
ω̄

 ,
x2 = m̃,

f1(x1) =

 a201
Vp
(m̄− m̄t)

A1
Lc

¡
Ψ̄cp01 − p̄

¢
1
J (−K1ω̄ −K2m̄− τ̄c)

 ,
f2(x2) =

A1
Lc

³
Ψ̃cp01 − (c2 + δ2) m̃

´
,

g(x) =

 0
0

1
JK2

 ,
V1 (p̄, m̄, ω̄) =

Vp
2a201

p̄2 +
Lc
2A1

m̄2 +
J

2
ω̄2,

where V1 is positive definite and proper Lyapunov func-
tion for ẋ1 = f1(x1). The Lyapunov function, V1, may
be written

V1 (x1) =
Vp
2a201

p̄2 +
Lc
2A1

m̄2 +
J

2
ω̄2

=
1

2
xT1Kx1



where K = diag
n
Vp
a201
, LcA1 , J

o
. The property°°°°∂V1∂x1

°°°°
2

kx1k2 = kKx1k2 kx1k2 ≤ kKk2 kx1k22

≤ max

(µ
Vp
a201

¶2
,

µ
Lc
A1

¶2
, J2

)
kx1k22

≤ γ1V1

where

γ1 ≥ 2
max

½³
Vp
a201

´2
,
³
Lc
A1

´2
, J2

¾
min

n
Vp
a201
, LcA1 , J

o
together with the property°°°°∂V1∂x1

°°°°
2

= kKx1k2 ≤ kKk2 kx1k2

≤ max

(µ
Vp
a201

¶2
,

µ
Lc
A1

¶2
, J2

)
kx1k2

≤ max

(µ
Vp
a201

¶2
,

µ
Lc
A1

¶2
, J2

)
µ

≤ γ2

where γ2 = max
½³

Vp
a201

´2
,
³
Lc
A1

´2
, J2

¾
µ and the con-

dition kx1k2 ≤ µ has been used, satisfies Assumption 1
in [10]. Investigating g(x) we find

kg(x)k =

µ
1

J
K2

¶2
≤ θ1 (kx2k) + θ1 (kx2k) |x1|

where θ1 (kx2k) ≥
¡
1
JK2

¢2
and θ1 (kx2k) = 0, and

Asumtion 2 of [10] is satisfied. The observer error dy-
namics are globally exponentially stable, that is there
exist two positive constants λ1 and λ2, such that
kx2 (t)k ≤ λ1 kx2 (t0)k e−λ2(t−t0). Integrating this so-
lution over time, we getZ ∞

t0

kx2 (t)kdt ≤ λ1 kx2 (t0)k
Z ∞
t0

e−λ2(t−t0)dt

≤ λ1 kx2 (t0)k eλ2t0
Z ∞
t0

e−λ2tdt

≤ λ1
λ2
kx2 (t0)k eλ2t0

≤ φ (kx2 (t0)k)
where φ (kx2 (t0)k) = λ1

λ2
kx2 (t0)k eλ2t0 is a class K

function. Having satisfied Asumtions 1, 2 and 3 and
GES of (3), Theorem 2 in [10] states that the cascade
is globally asymtotically stable.

6 Simulations

The model used for simulation is the same as the one
used in [4]. The compressor is initially operating in a
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Figure 3: Compression system driven into surge

stable operating point. After t = 5s, a throttle change
introduces a drop in mass flow driving the compressor
over the surge line.

6.1 Surge
In this section it is illustrated that the model is capable
of simulating surge. A constant drive torque, τd =
400Nm, is applied to the motor, and as can be seen from
Figure 3 the system is driven into surge. As can be seen
from Figure 3, the estimation error quickly converges to
zero.

6.2 Simulation of active surge stabilization us-
ing feedback from estimated mass flow
I this section the proposed controller (7) using the pro-
posed mass flow observer (15) is simulated. From Fig-
ure 4 it can be seen that the system remain stable after
the throttle change. The desired shaft speed was chosen
to be ω0 = 400[1/s] ≈ 2513.3[rad/s], controller para-
meters used were c1 = 100, K1 = 10000, K2 = 500
and the observer gain is set at c2 = 40000. Notice that
according to (9), K2 = c1K1. Using this large gain, the
generated drive torque becomes very large. In the sim-
ulations we have therefore chosen the much lower gain
K2 = 500.

6.3 Simulation of active surge stabilization with
measurement noise and estimated mass flow
In a real compression system there will be disturbances
and measurement noise. In this section noise in the
pressure measurement, which is one of the inputs to
the observer, is added. By this we wish to illustrate
the ability of the observer to reject such disturbances.
The measurement noise is zero mean white noise with
an amplitude of 5000Pa. The controller and observer
parameters are the same as above. As can be seen from
Figure 6,the system remains stable
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Figure 4: Active surge control using estimated mass flow
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Figure 5: Mass flow estimation error
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Figure 6: Active surge control using estimated mass flow
and measurement noise

7 Conclusion

We have shown that surge in a centrifugal compression
system can be actively stabilized using the drive torque
as control variable. The controller uses feedback from
the rotational velocity and estimated mass flow. The
mass flow observer is based on pressure measurement.
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