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Compressor surge control using a close-coupled valve and backstepping 
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Abstract 
In this paper we propose anti surge controllers for a close 

coupled valve in a compression system. The valve modifies the 
characteristic of the compressor, and allows for stable oper- 
ation beyond the original surge line. The design tool used 
is backstepping and global uniform asymptotic stability is 
proven. Damping terms are included in the controllers, and 
in the presence of both mass flow and pressure disturbances, 
global uniform boundedness and convergence to a set i s  en- 
sured. Under the assumption of decaying disturbances the 
controller ensures convergence to the origin. 

1. Introduction 
Compressor surge occurs if the flow is throttled beyond the 

surge line. Dependent on the system geometry the instability 
can take the form of either rotating stall, surge or both. In this 
paper we focus on surge which is an axisymmetric oscillation 
of the flow. These oscillations severely reduces the compressor 
efficiency and can possibly dama e the compressor. A number 
of approaches to control of surge !and rotating stall) have been 
proposed. A review of the different approaches can be found 
in [I]. 

The use of a close-coupled valve (CCV) for control of com- 
pressor surge was studied in [8], and experimental results of 
compressor surge control using a CCV was reported in [2]. In 
91, this strategy was compared, using linear theory, to a num- L er of other possible methods of actuation and sensing. The 

conclusion was that the most promising methods of surge con- 
trol is to actuate the system with feedback from the mass flow 
measurement to a CCV or an injector. Here we will study the 
use of a CCV. 

In [8] the stability of a compressor with CCV control was 
studied using a Lyapunov function termed the incremental en- 
ergy. The control law developed in [8] requires knowledge of 
the compressor characteristic, and additional adjiistments to 
the controller dictated by the Lyapunov analysis is performed 
in order to avoid a discontinuous controller. 

Here we will use backstepping [4] to derive a control law for 
a CCV which gives a GUAS equilibrium beyond the original 
surge line. As in [8] ,  disturbances in the pressure rise will be 
considered and in addition we will also consider disturbances in 
the plenum outflow. In the case of only pressure disturbances, 
we will derive a controller that only requires knowledge of an 
upper bound on the slope of the compressor characteristic in 
order to guarantee stability. Discontinuousity is not a problem 
with this controller. Under mild assumptions on the distur- 
bances, global uniform boundedness and convergence will be 
proven in the presence of both pressure and mass flow distur- 
bances. 

Backstepping was used in [5] and [6] to design anti surge 
and anti stall controllers when the throttle is the control vari- 
able. Here, we use the pressure drop across the CCV as the 
control variable. In [5] and [SI the controller uses feedback from 
mass flow and pressure. As will be shown, the application of 
the backstepping procedure to CCV control, in the case of no 
mass flow disturbances, results in a control law which uses 
feedback from mass flow only. 

2. Compressor and throttle model 
The differential equations describing pressure and mass 

flow oscillations in a compressor-plenum-throttle system is 
found in [3]. The model is 

i = B(*c(4) -+I 

where 4 is the mass flow coefficient (annulus averaged, axial 
velocity divided by wheel speed, [7 ), I) is the non dimensional 

density and the square of wheel speed), a(+) is the throt- 
tle characteristic and B1 is the “B-parameter” defined in [3]. 
The time variable t used throughout this text is also nondi- 
mensional, and is referred to time for the wheel to rotate one 
radian. 

The compressor characteristic can be modelled as [7],  

plenum pressure or pressure coe 1 cient (pressure divided by 

~. 

1 4  
q c ( 4 )  = + H [ 1 + ; (f - 1) - 5 (E - 1) ‘1 , (2) 

where the parameters &O > 0, N > 0 and W > 0 are defined 
in [7]. The throttle mass flow +(+) is given by the throttle 
characteristic 

where y is the throttle gain. The compressor is in equilib- 
rium when 4 = 4 = 0. The steady state values of mass flow 
40 and plenum pressure t)o are found from the intersection of 
the throttle characteristic with the compressor characteristic 
as shown in figure 1. As the compressor is throttled, that is, 
as y is decreased, the equilibrium point moves along the com- 
pressor characteristic towards lower values of 4. This is shown 
in figure 1 for y = 0.5 and 

@(?It) = Y Jij (3) 

= 0.65. 

1 B =  U where U is compressor speed, a, is the speed 
of sound, V, is the plenum volume, A,  is the flow area and L, is the 
length of ducts and compressor 
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The nondimensionalization employed, transforms the usual 
family of curves in the compressor map, one for each compres- 
sor speed, to one single characteristic given by (2). The surge 
line, which passes through the local maxima of the family of 
curves is transformed to the local maximum of (2). Equilibria 
to the right of this local maximum are stable, and equilibria 
to the left are unstable. That is, if the throttle line crosses 
the compressor characteristic in an area of positive slope, the 
compressor will go into surge. The objective of this paper is 
to design control laws that stabilizes these unstable equilibria. 

3. Actuation 
A compressor in series with a CCV will be studied in the 

following. The system is shown in figure 3. With close-coupled 
is understood that the distance between the compressor outlet 
and the valve is so small that no significant mass storage can 
take place [8]. The equivalent characteristic of the compressor 

U ccv U 
Compressor Plenum 

Figure 2: Compression system 

and valve is given as 

where !PC(4) and !PV(4) are the compressor pressure rise and 
valve pressure drop respectively. The model of [3] can now be 
written as [SI 

i = B(Qe(4)-$) 

*e(+) = *c(4) - *744), (4) 

(5) 
as the compressor in series with the valve is treated as an 
equivalent compressor. 

4. Change of coordinates 
In order to  simplify the analysis, the approach of [SI is 

followed where the system is transformed so that the origin 
becomes the equilibrium under study. This is done by a change 
of variables to 

4 = 4-90 * = * - $ 0  

!e (4) = q e  (4 + 40)  - *e (40) 

S C ( 4 )  = %(? + 40)  - Q C ( 4 0 )  

U = +&) = %(4 + 40) - Q v ( 4 0 )  

@($I = @(d + $ 0 )  - @($oh 
where 40, $0 now is the equilibrium values of , $ in ( 5 ) .  
Applyin the transformations (6) to the model (57, and using 
(2) and 73) results in the transformed equations 

(7) 

k1 = 9 ($ - 2 ) ,  kz = &$ ($ - 1) and IC3 = *. Obvi- 
ously k3 > 0, while k1 5 0 if the equilibrium is in the unstable 
region of the compressor map and k1 > 0 otherwise. The sign 
of kz may vary. 

is the pressure drop 
across the valve. Our aim will be to design a control law U 
for the valve such that the compressor can be operated also on 
the left side of the original surge line without going into surge. 
That is, we are going to use feedback to move the systems 
surge line towards lower values of 4. 

As the pressure difference across the valve always will be a 
pressure drop, the valve must be partially closed during stable 
operation in order for the control U to attain both positive 
and negative values. A further discussion of the steady state 
pressure loss can be found in [8]. 

As in [SI, the control variable U = 

5. Backstepping 
The backstepping methodology of 41 will now be employed 

Step 1. Two error variables are defined as z1 = 7c, and z2 = 
6 - a. The control Lyapunov function (clf) for this step is 
chosen as ~ 

in designing a control law for the CC J . 

B z  Vl = ;;%I 
L 

with time derivative 
Vl = z1 (-&(a) + z2 + a)  . 

12,&(& 2 0 * -&a) 5 0 

(12) 

(13) 

The load is assumed passive, that is d&($) 2 0 VJ. We have 

As it is desirable to avoid cancellation of useful nonlinearities 
in (12), the stabilizing function a is not needed and accordingly 
a = 0, which gives 

Although the virtual control a is not needed here, in the in- 
terest of consistency with the following sections this notation 
is kept. 
Step 2. The derivative of 2 2  is 

Vl = -&(z1)z1 + z1z2. (14) 

i z  = S ~ , ( Z Z )  - B z ~  - Bu. (15) 
The clf for this step is 

1 2  
v2 = Vl + -z2 2B 

with derivative 
V 2  = -z1&(z1) + 2 2  (e&) - U) . (17) 

Notice that V2 as defined by (16) is identical to the incremental 

gg%f I:&. The control variable U will be chosen so that 
(17) is made negative definite. To this end we define the Enear 
control law 

where the controller gain c2 > 0 is chosen so that 

Using (10) this implies that c2 must satisfy 

U = c2.22, (18) 

(19) 2 2 ~ , ( 2 2 )  - czz; < 0. 

Finding the roots of the above bracketed expression, it is seen 
that (20) is satisfied if c2 is chosen according to 

k22 ~2 > - - k l .  
4k3 

Although (21) implies that the compressor characteristic must 
be known in order to determine c2, it can be shown that the 
knowledge of a bound on the positive slope of the characteristic 
is sufficient. Differentiating (10) twice wrt 6 reveals that the 
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maximum positive slope occurs for 4 = 4, = -& and is 
given by 

Assuming that only an upper bound a, on the positive slope 
of Gc(d) is known, a conservative condition for cz is 

Thus the price paid for not knowing the exact coefficients of 
the compressor characteristic is a somewhat conservative con- 
dition for the controller gain cz .  Notice also that no knowledge 
of Greitzer's B-parameter or its upper bound is required in for- 
mulating the controller. The final expression for V2 is then 

(24) 
The closed loop system can be written as 

2 V z  = - ~ 1 & ( ~ 1 )  + @ c ( ~ z ) ~ 2  - C Z Z ~  = -W(ZI,ZZ) 5 0. 

(25) 

22 = B(-z1 + G ( z 2 )  - czzz). (26) 

1 
il = @z1) + 22)  

It then follows from the LaSalle-Yoshizawa theorem that the 
equilibrium point 21 = zz = 0 is globally uniformly asymptot- 
ically stable (GUAS). 

5.1. Sensing requirements 
across then CCV 

has been considered the control variable. It is now assumed 
that the CCV has a characteristic of the form 

Up to this point the pressure drop 

where ycc > 0 is proportional to the valve opening. Notice that 
the assumption of no mass storage between the CCV and the 
compressor (hence close-coupled) implies that the same mass 
flow 4 is seen by both the compressor and the CCV. According 
to (6) and (27) U is given by 

Inserting 

in (28) and solving for yo gives a control law for yo: 
U =  c 2 d  = cz(4 - 40) (29) 

(30) 4 
"/cc = 

&2(+ - $0) + * E , ( 4 0 )  

This control law requires only sensing of the mass flow 4. 

6. Disturbances 
As in [8] the effect of a pressure disturbance G d ( t ) ,  and a 

flow disturbance &d ( t )  is considered. The pressure disturbance 
will accelerate the flow, and the flow disturbance is modelling 
unsteady plenum outflow. In the analysis of [8] & d ( t )  is set to 
zero. Here, both disturbances will be considered. The distur- 
bances are time varying, and the only assumption made at this 
point is boundedness, that is Il&dllm and ll@dllo0 exists. With 
these disturbances the model is: 

1 d = - B ( & & ( $ ) 4 ( t ) )  

To ensure boundedness of the system states, damping is in- 
cluded in the controller design. 

~ 
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6.1. Pressure disturbances 
First, pressure disturbances will be considered. That is, 

& d ( t )  is set to zero as in [8]. The backstepping procedure is as 
follows: 
Step 1. Identical to Step 1 in section 5. 
Step 2. The derivative of 2 2  is 

2 2  = SGC(fj) - B2l + B@d(t) - B U .  (32) 
V2 is chosen as 

1 2  
v2 = Vl + - 2 2  2 B  (33) 

where VZ can be bounded according to 

v z  = -&(21)z* + 2 2  (%($) + h ( t )  - U )  . (34) 

(35) 

Control law. To counteract the effect of the disturbance, a 
damping factor d 2  > 0 is included and U is chosen as 

U = ~ 2 . ~ 2  + d z z z .  

cz is chosen so that (23) is satisfied. Inserting (35) in (34) gives 

(36) V 2  = -~i&(zi) + G C ( z 2 ) 2 2  - ~ 2 ~ 2 2  + @ d ( t ) ~ ~  - dzz;. 
Use of Young's inequality gives 

and VZ can be bounded according to 

V 2  I 

(39) 
2 

where 

is radially unbounded and positive definite. This implies that 
V z  < 0 outside a set R1 in the z1 - z 2  plane. 

According to 141, the fact that V , ( Z I , Z ~ )  and W(ZI ,Z?)  
is positive definite and radially unbounded, and V Z ( Z ~ , Z ~ )  IS 
smooth, implies that there exists class-Kw functions pi, ,& 
and ,& such that 

W(21,22) = 21&(z1) - (@,(z2)zz - c z z 2 )  

where a = (21 ~ 2 ) ~ .  It now follows from lemma 2.26 in [4], 
that z ( t )  is globally uniformly bounded and that z( t )  converges 
to the set 

edness and convergence for 4(t) and &t) and even +(t) and 

Notice that the controller (35) is essentially the same as 
(18), with the only difference being that (35) requires a larger 
gain in order to suppress the disturbance. Consequently, the 
same sensing requirements as described in section 5.1. apply. 

6.1.1. Convergence to the origin In this section we 
show that an additional assumption on the disturbance ensures 
that the controller (35) not only makes the states globally uni- 
formly bounded, but also guarantees convergence to the origin. 

4(t )  follows. 

- - - 
It is now assumed that the disturbance term @ d ( t )  is upper 
bounded by a monotonically decreasing non-negative function 
Q d ( t )  such that 
- 

I G d ( t ) l  I Vt L 0 (42) 

lim Gd(t) = 0. (43) 
and 

t-w 

Inspired by the calculations starting on p. 75 in [4] for a simple 
scalar system, we introduce the signal Vz(a)ect for use in the 
convergence proof. Notice that the positive constant c intro- 
duced at this point is used for analysis only, and is not included 



in the implementation of the control law. It now follows that 
d 
- {Vz(z)ect} = (Vz(z) + cvZ(z)) ect 
dt 

Using (54) and (56), an upper bound on VZ is 

By integrating (46) and using an argument similar to the one 
in the proof of lemma 2.24 in [4], it can be shown that 
~ z ( z ( t ) )  I v2(r(0))e-ct+4cdz 1 (TdZ(o)e-+ + .dZ(t/2)) . (47) 

- 2  
Since limt,, q d  ( t / 2 )  = 0 it fo~lows that 

As VZ is positive definite it follows that 

Thus we have shown that under the additional assumptions 
(42) and (43) on the disturbance term, z(t)  converges to the 
origin. This also implies that 4 and 4 converges to the origin 
and that +(t) and $( t )  converges to the point of intersection 
of the compressor and throttle characteristic. 

6.2. Pressure and flow disturbances 
At this point we include the flow disturbance & d ( t )  in the 

analysis. The backstepping procedure is as follows: 
Step 1. As before two error variables z1 and zz are defined as 
z1 = 4 and zz = 4 - a. Again, VI is chosen as 

B z  Vl = -21, 

lim Vz(z(t)) = 0. (48) 

lim z( t )  = 0. (49) 

t-m 

t-m 

(50) 

(51) 

= -diZi, (52) 

2 
with derivative 

where (31) is used. The virtual control a is chosen as 

where -&zl is a damping term to be used to counteract the 
disturbance &,j(t). VI can now be written as 

and upper bounded according to 

vl = 21 (-a(,,) + ZZ - +d(t) + a) , 

vi = -diZl + ZiZz - &d(t)Zl - &(Z1)Z1, (53) 

To obtain the bound in (54), Young's inequality has been used 
to obtain 

Step 2. The derivative of zz is 
aa 1 

B ,& = BGC($) - Bzi + B&d(t) - -- (-&(Zl) 4- d) 

From (52) it is seen that 
aa - = -dl. 
a21 

(57) 
VZ is chosen as 

(58) 
1 2  vz = Vl + -Z2. 2B 

v z  I -T(z1).1+ -&&- 
d di A +' B2 (-&(Z1) + 4) - 7i;i@d(t) - U ) .  (59) 

Control law. To counteract the effect of the disturbances, a 
damping factor dz must be included and U is chosen as 

U =  CZZZ - IC3 (a3 + 3 4  - k 2 p  - IC1a 

The parameter cz is now chosen according to 

Notice that this control law requires knowledge of the coeffi- 
cients in the compressor characteristic, the throttle character- 
istic and the B-parameter. Inserting (60) in (59) gives 

cz > Ik11. (61) 

The final upper bound for V2 can now be written as 

and 
(67) 

is radially unbounded and positive definite. This implies that 
V2 < 0 outside a set R2 in the z1 - zz plane. As in section 6.1, 
the functions &(a) and W ( z )  exhibits the properties in (40). 
Again, it can be shown that this implies that z(t)  is globally 
uniformly bounded and that z ( t )  converges to the set 

W ( Z ~ ,  Z Z )  (CZ + h)~; + h ( z ;  + 3 ~ ~ ~ ~ 2 2 )  + & ( ~ i ) ~ i  

Comment: Once the bounds on the disturbances Il&dllm and 
ll&dllm are known, the size of the set RZ in the z1 - zz plane 
can be made arbitrary small by choosing the damping factors 
dl and dz sufficiently large. The same comment applies to the 
set R1 defined in (41). 

6.2.1. Convergence to the origin In order to prove 
convergence of z(t) to the origin, we make the following as- 
sumption on &d(t): 

and 
lim &d(t) = 0. 
t-m - 

@d ( t )  is a monotonically decreasing non-negative function. The 
assumptions on !$d(t) in equations (69) and (70) are also used. 
By using the same arguments as in section 6.1.1., but with two 
disturbance terms, it can be shown that 
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- 2  - 2  Now limt,, ( t / 2 )  = 0 and limt-, @d (t/2) = 0 implies 
that limt-+m Vz(z(t)) = 0 and by the positive definiteness of 
VZ it follows that 

02. 

0. lim z ( t )  = 0. (72) '-8 
t-m 

Thus we have shown that under the assumptions (42),(43), (69) 
and (70) on the disturbance terms, z( t )  converges to the origin. 
This also implies that &t) and &t) converges to the origin and 

-02 

-o 

to y = 0.5 so that the'intersection of the throttle lige and the 
compressor characteristic is located on the part of the char- 
acteristic that has positive slope, and thus the equilibrium is 
unstable, see figure 3. In the two plots to the left in figure 3, it 
is shown how the controller (18) with cz = 6 stabilizes the sys- 
tem, while in the two plots to the right noise has been added, 
and the system is stabilized by the controller (60) with dl = 1 
and c2 = dz = 6. 

In figure 4 a step in the throttle gain occurs at t=30. The 
gain changes from y = 0.65 to y = 0.5 and, consequently, the 
compressor goes into surge as shown in the two leftmost plots in 
figure 4. In this simulation a pressure disturbance is included. 
In the two rightmost plots, the controller (35) with c2 = d z  = 3 
is active. As can bee seen the compressor remains stable after 
the throttle change. The damping of the disturbance can also 
be observed. 

7'' I ~.:--i 
-0 2 

LJ . '  - 0 4  

-0.2 

-0.4 o~~ 0 10 20 30 40 

+e- 

l t 

( 3 - 0 2  ~3~~ 

-04  

0 10 20 30 40 0 10 20 30 40 
t t 

Figure 3: The throttle gain is set to y = 0.5, and the compressor 
is surging. The controllers are switched on at t = 20. The pressure 
disturbance is white noise of amplitude 0.15, and the mass flow 
disturbance is white noise of amplitude 0.1. 

8. Conclusion 
Anti surge controllers for a close-coupled valve in series 

with a compressor have been developed. By the application of 
the backstepping methodology, a control law which uses feed- 
back from mass flow only has been derived. Only a upper 
bound on the slope of the compressor characteristic is required 
to implement this controller. The controller is used both in 
the case of no disturbances and in the presence of pressure 
disturbances. 

I . 1 I ,  L I 

0 20 40 60 0 20 40 60 
t t 

Figure 4: The compressor is throttled from y = 0.65 to y = 0.5 at 
t=30. The pressure disturbance is white noise of amplitude 0.10. 

A more complicated control law is derived for the case of 
both pressure- and mass flow disturbances. In order to im- 
plement this controller, the compressor characteristic and the 
B-parameter must be known. 

The control laws stabilizes the undisturbed Moore-Greizer 
model in the previously unstable area of the compressor map. 
In the presence of disturbances globally uniformly bounded- 
ness of both mass flow and pressure is ensured. Under the 
assumption of decaying disturbances, convergence to the ori- 
gin is proved. 
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