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Abstract— An experimental comparison of two common pa-
rameter identification schemes is presented. The recursive least
squares method and the extended Kalman filter are applied to
identify three parameters of a second-order linear mass-spring-
damper model, using data obtained from a nanopositioning
stage with a highly resonant dynamic response.

I. INTRODUCTION

Applying damping control to highly resonant flexible
structures, one can often find optimal controller parameters
that will maximize the introduced damping [1], [2], [3]. Find-
ing the optimal controller parameters requires knowledge of
the dynamics of the flexible structure at hand. An accurate
description of the dynamics can often be obtained from e.g.
frequency response data, and the optimal controller param-
eters can for instance be found using some optimization
scheme incorporating these data. In some applications system
parameters can be expected to change during operation,
and controller parameters should be adjusted accordingly to
maintain optimal damping.

Nanopositioning stages often exhibit highly resonant dy-
namics. Such devices are typically used for high precision
positioning, found in systems for scanning probe microscopy,
optical alignment, and data storage [4].

In order to obtain higher precision, damping control
(feedback) can be employed as part of the control scheme
to good effect [5], or feed-forward compensation using the
inverse kinematics can be used [6]. Since the application of
nanopositioning stages typically involve moving payloads of
various masses, the resonance frequencies of the mechanical
structure will change every time a new payload is attached.
In addition, such devices will most frequently use piezo-
electric actuators, which will experience variation in gain
due to changes in actuator temperature, as well as introduce
disturbances due to hysteresis and creep [4].

It is apparent that control schemes for such devices can
benefit from some form of online adaptation in order to

This work was supported by the Norwegian Research Council and the
Norwegian University of Science and Technology. The second author is
supported by the Slovak Research and Development Agency under projects
APVV-0090-10 and LPP-0118-09.

Arnfinn Aas Eielsen eielsen@itk.ntnu.no, Tor Arne Johansen
tor.arne.johansen@itk.ntnu.no, and Jan Tommy Gravdahl
jan.tommy.gravdahl@itk.ntnu.no are with the Department
of Engineering Cybernetics at the Norwegian University of Science and
Technology, Trondheim, Norway
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maintain optimal performance during operation.
As a step in this direction, two common schemes for

parameter identification have been compared experimentally
in order to assess their ability to learn the model parameters
for a simple second-order linear model for the vibration
dynamics (a mass-spring-damper system) in open-loop. The
schemes are the recursive least squares method (RLS) and
two different versions of the extended Kalman filter (EKF),
continuous EKF and hybrid EKF.

In Section II the system is described, followed by brief
introductions to the RLS in Section III, and the continuous
EKF and hybrid EKF in Section IV. The experiments are
described in Section V, and the results from the experiments
are presented in Section VI, followed by a discussion Section
VII and conclusions in Section VIII.

II. SYSTEM DESCRIPTION

A. Mechanical Model

The dynamics of flexible structures are often adequately
described by lumped parameter truncated linear models [1].
The most pronounced vibrations modes will typically be
included in such a model, while higher order modes with
small response magnitudes are neglected. A general model
form to describe the dynamics for n point masses in the
presence of external and linear elastic, inertia and damping

Fig. 1. Nanopositioning stage.
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Fig. 2. Serial-kinematic configuration of the nanopositioning stage.

forces, in a non-gyroscopic, flexible structure is

Mẍ+ Cẋ+Kx = f

where x ∈ Rn is the vector of displacements, f ∈ Rm
is the vector of external point forces, M , C, and K are,
respectively, the mass, damping and stiffness matrices. The
mass, damping, and stiffness matrices are symmetric and
semi-positive definite.

The nanopositioning stage used in this work is shown in
Fig. 1. It has a serial-kinematic configuration. A simplified
free body diagram for the mechanism is displayed in Fig. 2.

Motion along the y-axis is considered. The dynamic model
for the displacement xy is

myẍy + cyẋy + kyxy = fy,

where my (kg) will be the compound mass of the sample
platform and the actuation mechanism for the x-axis, as well
as mass due to any payload attached to the sample platform,
cy (Ns/m) is the damping coefficient, ky (N/m) is the spring
constant, and fy (N) is the applied external force.

The piezoelectic actuator can be considered a force trans-
ducer, generating a force proportional to the applied voltage,
thus the external force applied in the y-direction is given by

fy = βu

where β (N/V) is the effective gain of the piezoelectic
actuator from voltage to force, and u (V) is the applied
voltage.

Dropping the y-subscripts, and denoting x1 = xy , the
state-space formulation for the system is given as

ẋ1 = x2

ẋ2 = −a0x1 − a1x2 + b0u,
(1)

where a0 = k
m (1/s2), a1 = c

m (1/s), and b0 = β
m (m/s2V).

The frequency response for this axis was recorded, using
bandwidth-limited white noise excitation, with and without a
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Fig. 3. Measured frequency response for one axis of the nanopositioning
stage, and the corresponding response using the model (1) and parameter
values from Table I, with and without payload attached to the sample
platform.

payload of approx. 24.75 g attached to the sample platform.
The two responses are displayed in Fig. 3. The model (1)
was fitted to the frequency response data using the MATLAB
System Identification Toolbox, and the resulting parameter
values are presented in Tab. I, and the response of the model
(1) using these parameters are also displayed in Fig. 3.

As can be seen, the actual response of the first vibration
mode is well approximated by the model. There are higher
order modes in the system, and the second vibration mode
is clearly visible in Fig. 3. The higher order modes have
neglible magnitude responses in comparison to the first, thus
a second-order model should be sufficient to describe the
dominant dynamics of the system.

We note that the parameters in Tab. I translates to a natural
frequency of f0 =

√
a0/2π = 423 Hz and a damping ratio

of ζ = a1/2
√
a0 = 0.0146 for the case with the payload

attached, and for the case without the payload, we have a
natural frequency of f0 = 483 Hz and a damping ratio of ζ =
0.0143. The dc-gain for the case with payload is b0

a0
= 0.114

µm/V, and for the case without payload it is b0
a0

= 0.116
µm/V.

TABLE I
IDENTIFIED PARAMETERS FOR THE MODEL (1), USING FREQUENCY

RESPONSE DATA.

With payload on sample platform
Parameter Value Unit

b0 0.808·106 µm/s2V
a0 7.06·106 1/s2

a1 77.6 1/s
Without payload on sample platform
Parameter Value Unit

b0 1.07·106 µm/s2V
a0 9.21·106 1/s2

a1 86.8 1/s
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Fig. 4. Signal chain for the overall system.

B. Overall System

The complete system used consisted of the nanoposition-
ing stage, as well as a reconstruction filter, an anti-aliasing
filter, an amplifier and a displacement sensor (a capacitive
probe). The signal chain is shown schematically in Fig. 4.

The sampling frequency used was 10 kHz. The recon-
struction and anti-aliasing filters were configured as second-
order low-pass Butterworth filters with conservative cut-off
frequencies at 1 kHz. The amplifier, with the given capacitive
load of the piezoelectric actuator, provided a bandwidth of
approximately 10 kHz, and the displacement sensor was
configured with a bandwidth of 100 kHz.

As the reconstruction and anti-aliasing filters noticeably
impact the observed dynamics, these were taken into ac-
count when generating the input signal for the identification
schemes, as shown in Fig. 5. This ensured that the input
signal u′ would match the output signal y′ in phase and
magnitude, in a sense removing the effect of these filters.
The effects of the amplifier and the displacement sensor were
neglected, as it would be impossible to implement replicas
of these filters digitally with the chosen sampling frequency.

To improve the results obtained from the parameter iden-
tification schemes, a pre-filter, Wp, was used. This was
chosen with consideration to the sensitivity functions for the
parameters of the model. For a transfer function G(s), the
Bode sensitivity function with respect to some parameter θ,
is defined as

S
G(s)
θ

∆
=
∂G(s)/G(s)

∂θ/θ
=

θ0

G(s)0

∂G(s)

∂θ

∣∣∣∣
NOP

,

using a nominal operating point (NOP) for all the parameters
in the transfer function [7].

The sensitivity functions for the parameters b0, a0, and a1

in the system model (1), using the parameters with payload
as the NOP, are displayed in Fig. 6. Most notably, the
parameter related to damping, a1, has very little impact
on the observed output at low and high frequencies. For
parameter identification it is considered good practice to
concentrate signal power in the frequency domains that
contain peaks in the sensitivity functions. This is done in
order to maximize the information content of the signals used
[8], [9].

The pre-filter was chosen to be a band-pass filter, using
a first-order high-pass filter with lower cut-off frequency of
flc = 100 Hz, and a resonant second-order low-pass filter,
with natural frequency of f0 = 450 Hz, and a damping ratio
of ζ = 0.1, thus amplifying the frequency content close to the
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Fig. 5. Signals fed to identification schemes.
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Fig. 6. Sensitivity functions for the parameters b0, a0, and a1, using data
from Tab. I.

resonant peaks of the two configurations (with and without
payload):

Wp(s) =
s

s+ 2πflc

(2πf0)
2

s2 + 2ζπf0s+ (2πf0)2

When applying the RLS method, numerical first and
second derivatives of the displacement signal are needed.
In order to generate proper transfer functions for filtering
the displacement signal, the low-pass filter was chosen to
be second order. To keep the order of the pre-filter at a
minimum, the high-pass filter was chosen to be first-order.

III. RECURSIVE LEAST SQUARES METHOD

The least squares method [10] is perhaps the best known
method for parameter identification. It can be used in recur-
sive and non-recursive form.

The starting point is a model of the system, assuming the
measured response y can be described as a vector of model
parameters θ appearing affinely with a vector of known
signals, ϕ, called the regressor:

y = θTϕ

The objective of the method is to find a good estimate of the
vector of parameter values, θ̂. By computing the estimated
response

ŷ = θ̂Tϕ

we can form the estimate error ε as

ε =
y − ŷ
m2



where m2 is a normalization signal (defined below) to ensure
that the estimate error will be bounded, i.e. ε ∈ L∞.
The (pure) least squares estimate of the parameters is then
obtained when minimizing the cost-function:

J(θ̂) =
1

2

[∫ t

0

ε2 dτ + (θ̂ − θ̂0)
TQ0(θ̂ − θ̂0)

]
(2)

The matrix Q0 is used to weigh the significance of the initial
parameter estimates, θ̂0, in minimizing the cost-function. The
cost-function (2) does not guarantee exponential convergence
of θ̂ to θ. By adding exponential discounting of past data,
by introducing a forgetting factor γ, exponential convergence
can be achieved. The cost-function will then be:

J(θ̂) =
1

2

[∫ t

0

e−γ(t−τ)ε2 dτ + e−γt(θ̂ − θ̂0)
TQ0(θ̂ − θ̂0)

]
The above expressions can be used to derive both the

recursive and the non-recursive form of the least squares
method. Here we apply the recursive form, amenable to
online implementation. The parameter update law is then
given by:

˙̂
θ = Pεϕ , θ(0) = θ0

The matrix P is called the covariance matrix, and can be
found by computing e.g.

Ṗ =

{
γP − PϕϕTP

m2 , if ‖P‖ ≤ R0

0 otherwise
, P (0) = Q−1

0 .

The initial covariance matrix must be symmetric and positive
definite, P (0) = Q−1

0 = Q−T
0 > 0. By using the forgetting

factor γ when updating the covariance P , there is a possi-
bility for P to grow without bound, thus ‖P‖ is bounded
by R0. The initial covariance matrix should therefore also
satisfy ‖P (0)‖ ≤ R0.

The normalization signal m2 can be constructed in various
ways to achieve boundedness of ε. Here it is taken to be

m2 = 1 + ns
2, ns

2 = ϕTPϕ.

This method is referred to as the modified least-squares
with forgetting factor. It has the properties ε, εns, θ̂,

˙̂
θ, P ∈

L∞ and ε, εns,
˙̂
θ ∈ L2. In addition, if the regressor ϕ is

persistently exciting (PE), then θ̂ converges exponentially to
θ. A piecewise continuous signal vector ϕ : R+ → Rn is
said to be PE in Rn with a level of excitation α0 if there
exists constants α1, T0 > 0 such that

α1I ≥
1

T0

∫ t+T0

t

ϕϕT dτ ≥ α0I, ∀t ≥ 0.

For linear single-input-single-output systems, such as the one
used in this work, as PE regressor vector is obtained if the
input signal u is sufficiently rich. In brief, an input signal
is sufficiently rich if it contains more frequency components
than half the number of unknown parameters [10].

For the system (1), we have the parameter vector

θ = [b0, a1, a0]
T,

the regressor vector is

ϕ = [u,−x2,−x1]
T,

and the output of the model is y = ẋ2.

IV. EXTENDED KALMAN FILTER

The extended Kalman filter [11], [12], [13] has become a
popular method for recursive parameter identification. It is
based on a weighted least squares criterion, but unlike the
RLS method, the states of the system are estimated as well
as the parameters.

A. Continuous Extended Kalman Filter

A general non-linear system is described by

ẋ = f(x, u) + w
y = h(x) + v

(3)

where x ∈ Rn are the states, y ∈ Rm are the measurements,
u ∈ Rl is the input, and w and v are zero-mean Gaussian
white noise processes, described uniquely by the the process
noise covariance matrix Q, and the measurement noise
covariance matrix R, respectively:

E[w(t)w(τ)T] = Qδ(t− τ)
E[v(t)v(τ)T] = Rδ(t− τ)

The extended Kalman filter (EKF) is obtained when the
states of the system (3) are estimated by linearizing about
the Kalman filter’s estimated trajectory. Linearization is done
by computing the Jacobians

F =
∂f

∂x

∣∣∣∣
x̂

,

H =
∂h

∂x

∣∣∣∣
x̂

.

Now the state estimates x̂ can be computed by solving

x̂(0) = E[x(0)]

P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T]

˙̂x = f(x̂, u) +K[y − h(x̂)]
K = PHTR−1

Ṗ = FP + PF T +Q−KHP,

where P is the error covariance, and K is the Kalman gain.
The above recursion is equivalent to minimizing the cost
function

J(x̂) =
1

2
(x̂− x̂(0))TP (0)−1(x̂− x̂(0))

+
1

2

∫ t

0

(y − h(x̂))TR−1(y − h(x̂)) + wTQ−1w dτ

subject to ẋ = f(x, u) + w [11], [14]. Summarily; large
measurement noise covariances will penalize the use of mea-
surements, and large process noise covariances will penalize
the use of predicted states from the system model. P (0)−1

has the same effect as Q0 in (2).



The extended Kalman filter can be used for parameter
identification, by modeling unknown parameters as Wiener
processes. Consider the linear system

ẋ = A(θ)x+B(θ)u+ w

y = C(θ)x+ v

with unknown parameters θ ∈ Rp. By augmenting the state
vector to include the unknown parameters, χT = [xT, θT], we
obtain the non-linear system χ̂ = f(χ, u)+w, y = h(χ)+v,
where

f(χ, u) =

[
A(θ)x+B(θ)u

0

]
h(χ) = C(θ)x.

The Jacobians F and H for this system are found as

F =

[
A(θ) ∂

∂θ [A(θ)x+B(θ)u]
0 0

]
x̂,θ̂

,

H =
[
C(θ) ∂

∂θ [C(θ)x]
]
x̂,θ̂

.

Applying the EKF to the model (1), we have

χ =

[
x
θ

]
=
[
x1 x2 a0 a1 b0

]T
,

A(θ) =


0 1 0 0 0
−a0 −a1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , B(θ) =


0
b0
0
0
0

 ,
C(θ) =

[
1 0 0 0 0

]
,

F =


0 1 0 0 0
−a0 −a1 −x1 −x2 u
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , and H = C.

B. Hybrid Extended Kalman Filter

A more accurate model of the system could have been
obtained by using an exact discretization, but by imple-
menting a discrete EKF using such a model, there will be
the added complexity of finding the transition matrix of
the system and the required Jacobians. Instead, applying a
continuous-discrete, or hybrid, version of the EKF (HEKF)
[11], [12] might improve the accuray of the estimates, since
the continuous part of the method can be run at a higher rate
than the sampling rate. The predicted system response will
therefore be closer to the response one would get if exact
discretization was used, but while using the setup already
found for the continuous EKF.

The system response is now described by the hybrid
system

ẋ = f(x, uk) + w
yk = h(xk) + vk

where yk is sampled sequence of measurements, uk is the
input sequence, and vk is a Gaussian white noise sequence,
and the noise properties are given by

E[w(t)w(τ)T] = Qδ(t− τ)
E[vkv

T
i ] = Rdδki

where Rd ≈ R/T , and T is the sampling period. Using the
initial values

x̂0 = E[x(0)] and P0 = E[(x(0)− x̂0)(x(0)− x̂0)
T],

the state estimates x̂k for k = 1, 2, ... are computed by the
hybrid EKF in two parts.

(1) The a priori state estimates and error covariance, from
time-step k − 1 to k− (i.e. for the sampling period T ), are
found solving

ẋ = f(x, uk−1)

Ṗ = FP + PF T +Q

where the initial values are given by x̂(0) = x̂k−1 and
P (0) = Pk−1.

(2) Given the a priori estimates x̂−k = x̂(T ) and error
covariance P−k = P (T ), the a posteriori state estimates x̂k
and error covariance Pk are found computing:

Kk = P−k H
T(HP−k H

T +Rd)
−1

x̂k = x̂−k +Kk(yk − h(x̂−k ))
Pk = (I −KkH)P−k (I −KkH) +KkRdK

T
k

C. Convergence Properties

In contrast to the RLS method, which has a firm theoretical
foundation with regards to parameter convergence in the
presence of a sufficently rich input signal [10], [8], there does
not exist any general proof of convergence for the EKF. The
EKF can provide good performance, though, but the quality
of the estimates and convergence are suceptible to the choice
of initial values and covariance tuning, as well as the input
signal [15], [16], [17], [12]. Theoretically, the RLS method
should converge to the correct parameter values when using
a sufficently rich input signal (which results in a PE regressor
vector). In practice, this might not happen.

V. EXPERIMENTS

A. Instrumentation

The experiment setup consisted of the long-range serial-
kinematic nanopositioning stage from easyLab, already de-
scribed in Section II, as well as a Piezodrive PDL200 linear
voltage amplifier (20 V/V), a ADE 6810 capacitive gauge
and ADE 6501 capacitive probe from ADE Technologies
to measure displacement (5 µm/V), and two SIM 965 pro-
grammable filters from Stanford Research Systems, used as
reconstruction and anti-aliasing filters. The actuation signal
and measured response was generated and recorded using a
dSPACE DS1103 harware-in-the-loop board, at a sampling
frequency of 10 kHz.



The capacitance of the pizeoelectric actuator was mea-
sured to be Cp ≈ 700 nF, thus the amplifier would, according
to the specifications, provide a first-order low-pass filter
dynamic response with a cut-off frequency of 10 kHz. The
specifications for the capacitive gauge and probe state that
the response should be like a first-order low-pass filter with a
cut-off frequency of 100 kHz. The programmable filters were
both configured as second-order Butterworth filters with cut-
off frequencies at 1 kHz.

B. Performed Experiments

Two experiments were performed. One using a pseudo
random binary signal (PRBS) [8] as the input to the system,
and one using a more typical signal for this particular kind
of device, i.e. a smoothed triangle wave [18]. The PRBS was
generated to provide frequency content in the band from 0 to
1 kHz. The triangle wave signal had a fundamental frequency
of 10 Hz. Both signals had an amplitude of 1 V.

The PRBS yielded large excitations, and thus provided
an ideal response with regards to parameter identification.
The triangle wave signal, on the other hand, yielded very
little excitation of the dynamics of the system, and therefore
provided a much more challenging task for the parameter
identification schemes.

Both experiments were performed by first attaching the
payload, a small block of steel weighing 24.75 g, to a
magnet fixed to the sample platform. Measurements of the
displacement were then recorded for approx. 100 seconds
with the payload attached, before the payload was removed
(while the system was running), and approx. 100 seconds
more was recorded with the payload detached.

C. Implementation and Tuning

For all methods the fourth-order Runge-Kutta scheme
[19] was used for numerical integration of continuous-time
differential equations. All methods were initialized with the
initial parameter estimates1:

θ0 = [b0, a1, a0]
T
0 = [5 · 105, 7 · 101, 6 · 106]T

For the EKFs, the inital state estimates were set to zero.
1) RLS: The applied RLS method provides two tuning

parameters, the forgetting factor γ, and the initial covariance
matrix P (0). The initial covariance matrix will only affect
the inital transient of the parameter estimates, thus, conver-
gence speed is mostly determined by γ. We found that the
maximal forgetting factor that did not make the norm of the
covariance matrix P to grow excessively large, was about
γ = 0.25. The initial covariance matrix was set to:

P (0) = diag([1 · 106, 1 · 101, 1 · 107])

1Note that in our implementation θ = [b0, a1, a0]T for RLS, and θ =
[a0, a1, b0]T for EKF.

2) Continuous EKF and Hybrid EKF: The EKFs required
tuning of the covariance matrices, R, Q, and P (0). The
measurement noise variance was found to be σ2

y ≈ 1.5·10−6,
thus the measurement covariance matrix was set to R = σ2

yI
for the continuous EKF, and Rd = R/T for the hybrid EKF.
The process noise covariance matrix was tuned using the
more challenging dataset obtained using the triangle wave
excitation, and good results were obtained when using:

Q1 = diag([1 ·10−12, 1 ·10−6, 1.5 ·1011, 2.5 ·101, 5.0 ·1010])

When using PRBS excitation, the variances in the parameter
estimates were very large when using the above tuning,
but this was impoved by reducing the covariances for the
parameters, i.e.:

Q2 = diag([1 ·10−12, 1 ·10−6, 1.5 ·109, 2.5 ·10−1, 5.0 ·108])

The initial error covariance matrix was set to:

P (0) = 10 ·Qi

In the hybrid EKF, the continous part was run at a faster rate
than the sampling frequency. We found that a step length, for
both datasets, of T/4, to produce good results (yielding a rate
of 40 kHz).

VI. EXPERIMENTAL RESULTS

A. Parameter Estimates

The parameter estimates when using triangle wave ex-
citation signal are presented in Fig. 7, and the parameter
estimates when using PRBS excitation are shown in Fig. 8.

To obtain some form of validation of the parameter esti-
mates, we used the following procedure: The mean value
of each parameter estimate time-series was computed for
t1 ∈ (75, 100) s and t2 ∈ (175, 200) s. Using these values,
the response of the model (1) was computed for t1 and t2,
using the input signal and mass configuration the parameter
values were found for. The simulated responses was then
compared to the measured responses. Tab. II summarizes the
resulting root-mean-square-errors (RMSE). The RMSE when
using the values in Tab. I are also shown.

TABLE II
RMSE OF SIMULATED VS. MEASURED RESPONSES IN nm.

MEASUREMENT NOISE IS APPROX. 1.25 nm RMS.

EKF RLS HEKF Tab. I
With payload on sample platform

PRBS 20.5 70.8 72.4 96.9
Triangle Wave 1.66 1.67 1.65 1.92

Without payload on sample platform
PRBS 29.9 81.7 70.8 31.7

Triangle Wave 1.68 1.72 1.68 2.44
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Fig. 7. Parameter estimates when using triangle wave excitation.
The time-series have been downsampled to 1 Hz.

VII. DISCUSSION

The RLS method, the continuous EKF, and the hybrid
EKF all perform well for parameter identification on this
system. Judging by the results in Tab. II, the continuous
EKF provides the best estimates overall. It is interesting to
note that the parameters obtain using frequency response
data provied the worst performance, suggesting that the
parameters have changed in the brief period between each
dataset were recorded, and that the optimal parameter values
are dependent on the input signal.

For all the schemes the first transient is somewhat faster
then the second transient. This is likely due to the step-
like input experienced when the input signal was turned on,
thus generating a large excitation which might have been
beneficial with regards to convergence. When removing the
mass, a brief, but fairly large, external disburbance was
introduced in the measurements, introducing biases in the
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Fig. 8. Parameter estimates when using PRBS excitation.
The time-series have been downsampled to 1 Hz.

paramater estimates.
Using PRBS excitation, all schemes converged to reason-

able values, even without the pre-filter Wp and careful tuning
of process noise covariance matrices used by the EKFs.
Using the pre-filter and better tuning improved the results.

Using triangle wave excitation, none of the schemes con-
verged to reasonable values without using a high-pass filter.
Using a high-pass filter all schemes improved significantly.
Using the resonant low-pass filter in addition to the high-pass
filter, improved the results, especially the estimates obtained
using RLS.

For the EKFs we observed that different covariance set-
tings would lead to different, but small, biases in the param-
eter estimates. For some covariance settings the parameter
estimates would diverge, this is in accordance with the results
in [16].

When using PRBS excitation, the variance in the param-



eter estimates from the EKFs was rather large. Reducing
the covariances improved this, but too small covariances led
to divergence, and the amount of reduction in parameter
estimate variance was therefore limited. The RLS mehtod
had a much more consistent behavior in this regard.

The EKFs provides a convenient method to trade off
between speed of convergence and the variance in the
parameter estimates, by tuning the process covariance matrix.
Tuning the forgetting factor in the RLS method does not
provide as dramatic effects on convergence speed, and it
consistently seemed rather slow with regards to convergence
speed. Using a non-normalized regressor speed up parameter
convergence for RLS, but at the expense of larger transients
and weaker properties for the signals in the estimation
scheme.

As can be seen from Figs. 7 and 8, there are quite not-
icable biases in the parameter estimates for each parameter
identification scheme, and they also appear to depend on
the excitation signal. Some bias should be attributed to the
configuration of the pre-filter, Wp, as well as the tuning
of the process noise covariance matrices. There is likely
some influence from the hysteresis effect in the piezoelectric
actuator, though most of this effect should be removed by
the high-pass filter.

The parameter estimates found using the EKFs are very
similar, but most noticably they differ in the obtained value
for a0. This difference seemed rather consistent and not
dependent on covariance tuning. The slightly different tran-
sient behavior, on the other hand, was tuning dependent.
We conjecture that with more careful tuning, the transient
behavior could have been made more similar.

The estimates produced by the RLS method are very much
dependent on the pre-filter, and different filter configurations
led the different biases. The RLS method produced noticably
different estimates than the EKFs. Tuning the forgetting
factor and the initial covariance matrix did only influence
the transient behavior and the variance of the parameter
estimates. The mean values obtained asymptotically were
the same. The method requires numerical differentiation of
the displacement signal, and the numerical differentiation
method used might influence the results.

VIII. CONCLUSIONS

The RLS method, the continuous EKF, and the hybrid
EKF all performed well for parameter identification on this
system. The extended Kalman filters needed careful tuning to
yield good performance, and all the schemes required some
pre-filtration of the signals used to provide good results. The
RLS method was particularly sensitive to the configuration
of the pre-filter.

We found the continuous EKF to be the overall best
performer, yielding parameter values that produced the least
discrepancy between model response and measured response.
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