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Abstract: Nanopositioning stages utilizing piezoelectric actuators exhibit several undesired
features inhibiting good reference tracking performance. The most salient features are lightly
damped mechanical resonances, hysteresis, and creep. In addition, sensor noise can limit the
resolution achievable when applying closed-loop control schemes. In order to reduce sensor
noise when using closed-loop control, we develop a state estimator in the form of an adaptive
Luenberger observer. Furthermore, we propose a novel method for compensating the hysteretic
behavior in piezoelectric actuators when tracking a reference trajectory, and present a method
for online identification of the parameters of the system, aiming for simplicity and ease of
implementation. The backstepping framework is used to obtain an adaptive control law and
to analyze stability and boundedness of the tracking error. Experimental results are presented
in order to assess the performance of the proposed hysteresis compensation, as well as the
backstepping control law, on a flexure-based nanopositioner using piezoelectric actuators.
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1. INTRODUCTION

Positioning with precision on the nano scale is needed in
several applications, such as scanning probe microscopy,
nano lithography, and alignment systems. Piezoelectric
actuators see widespread use in positioning devices for
such applications. This is due to their compact size, high
bandwidth, their ability to produce large forces, and their
effectively infinite resolution. On the other hand, nanoposi-
tioning stages utilizing piezoelectric actuators exhibit sev-
eral undesired features inhibiting good reference tracking
performance. The most salient features are lightly damped
mechanical resonances, hysteresis, and creep. In addition,
sensor noise limits the resolution achievable when applying
closed-loop control schemes (Devasia et al. [2007]).

In this paper we will develop a controller for tracking
periodic trajectories with bounded, piecewise continu-
ous derivatives. Triangle wave reference signals are typ-
ically used when generating images in scanning probe
microscopy. We will focus on reducing hysteresis, and we
develop a novel method for feed forward compensation
for hysteresis. We address the problem of sensor noise by
using a state observer, and in order to increase precision
we employ an adaptive controller.

We start by developing models that capture the hysteretic
behavior and the mechanical dynamics. To suppress sensor
noise, we set up an adaptive Luenberger observer (Ioannou
and Sun [1995]) to compute state estimates, and we
tune it by using the steady-state Kalman filter (Simon
[2006]) with a nominal model. Considering the hysteretic
? This work was supported by the Norwegian Research Council and
the Norwegian University of Science and Technology.

behavior as a bounded disturbance, an ISS (input-to-state-
stability) backstepping controller (Krstic et al. [1995]) is
utilized to obtain tracking. This controller is shown to
be robust against parameter uncertainty and bounded
disturbances. It provides bounds for the tracking error
and it allows for modularized parameter identification.
Parameter identification using normalized least-squares is
then employed in order to improve both state estimates
and tracking performance. Lastly we propose a simple
method to compensate for the disturbance due to the
hysteric behavior, and thus reduce the tracking error.

A diagram of the proposed control structure is presented
in Fig. 1.
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Fig. 1. The proposed control structure.

2. MODELING

In this section we present a model for the system at
hand, which is a flexure based nanopositioning stage
with a piezoelectric stack actuator. The dynamics of a



given point x on the mechanical system attached to
the actuator can adequately be described as a linear
lumped parameter system with an infinite number of
resonance frequencies. We will use reference signals with a
fundamental frequency below the first resonance frequency
of the given nanopositioning stage. Mechanical resonances
above the first resonance of the stage will therefore be
considered negligible, and a second order system should
provide a good approximation.

The hysteretic behavior of piezoelectric actuators is due
to ferroelectric phenomena, and therefore the hysteresis
exhibited in such actuators will appear between applied
voltage and induced charge (Newcomb and Flinn [1982]).
The mechanical response, the force developed by the ac-
tuator, considering voltage as input, will therefore exhibit
hysteresis, but the response considering charge as input,
is linear. To account for the hysteretic behavior between
applied voltage and induced charge, we use a modified
version of the Coleman-Hodgdon equations, which has
been shown to be a good phenomenological model in this
context (Banning et al. [2001]). The modified version of
the Coleman-Hodgdon equations is shown to be equivalent
to the original formulation, but is on a form that makes it
possible to use it for feed forward hysteresis compensation.

2.1 Piezoelectric Stack Actuator

The response of a piezoelectric stack actuator, can be
described by its constitutive equations (Preumont [2006])

ε = sEσ + d33E (1)
D = d33σ + κσE, (2)

where sE is the elastic compliance [m2/N], d33 is a piezo-
electric constant [m/V], and κσ is the permittivity of the
material [F/m]. We assume that the strain ε [m/m], stress
σ [N/m2], electric field E [V/m], and charge density D
[C/m2] are applied or measured along the poling axis of
the piezoelectric material.

Blocking Force The blocking force of the piezoelectric
stack actuator is the maximum force that can be developed
by the actuator in response to an applied voltage, and can
be found when the actuator is clamped, ε = 0.

A piezoelectric stack actuator consists of multiple layers of
piezoelectric material. Considering one element, or layer,
of the stack, we find the stress on that element due to an
applied electric field from (1) as

σ = −d33c
EE,

where cE = 1
sE

is the elastic stiffness [N/m2].

The geometry of one stack element is a rectangular cuboid,
with thickness l [m] along the poling direction, and surface
area A [m2] for the faces normal to the poling direction.
The stress on one element due to a force Fa [N] in the
poling direction is therefore σ = Fa

A . The electric field due
to the an applied voltage u [V] is E = u

l . For one stack
element in a balance of stress, we have

Fa
A
− d33c

E u

l
= 0,

and for a stack with n elements with a total thickness of
` = nl the blocking force will be

Fa = nd33kau = Kau , ka =
cEA

`
, (3)

Fig. 2. Nanopositioner.

where we recognize ka as the stiffness [N/m] of the stack,
and we lump the various material parameters into the gain
coefficient Ka = nd33ka for convenience.

Charge The charge density on the electrodes of an
element in the piezoelectric stack actuator is given by (2).
For the stack with n elements, the total charge q = nAD
[C], given the geometry above, will be

q = nd33F +
n2κσA

`
u.

The stress in the material due to strain is given by Hooke’s
law as

σ = cEε

and for the given geometry the resulting force due to a
displacement in the stack x1 [m] must be

Fa =
1
n

cEA

l
x = kax1,

thus the total charge in the stack is
q = nd33kax+ Cau = Kax1 + Cau, (4)

where Ca = n2κσA
` is the capacitance [F] of the stack.

2.2 Nanopositioning Stage

If we assume that the combined mass of the moving
platform and the piezoelectric stack actuator is M = mp+
ma [kg], the combined damping coefficient of the flexures
and the actuator is c = cf + ca [Ns/m], and the combined
spring constant of the flexures and the piezoelectric stack
is k = kf + ka [N/m], the dynamics of the system is

ẋ1 = x2

ẋ2 = − k
M x1 − c

M x2 + 1
M Fa , Fa = Kau,

or more briefly
ẋ1 = x2
ẋ2 = −a0x1 − a1x2 + b0u,

(5)

where a0 = k
M a1 = c

M , b0 = Ka
M .

If we are considering charge as the input to the above
system, we substitute (4) into (5) and obtain

ẋ1 = x2

ẋ2 = −ā0x1 − a1x2 + b̄0q
(6)

with

ā0 = a0 + b0
Ka

Ca
and b̄0 = b0

1
Ca

. (7)



2.3 Hysteresis

The Coleman-Hodgdon equations (Coleman and Hodgdon
[1986]) is a well known Duhem model for describing
hysteretic behavior in ferromagnetic materials, which also
has seen widespread use describing ferroelectric hysteresis
as well (e.g. Banning et al. [2001], Stepanenko and Su
[1998]).

A formulation of the Coleman-Hodges equations that
capture the behavior observed in the system at hand
(since we apply voltages below the coercive voltage for
the actuator), is

ẇ = βu̇− αw|u̇|+ γ|u̇|u (8)
where u is the input, w is the output, and the parameters
satisfy α > 0, β > 0, γ

α > β, and γ
α ≤ 2β. The last

inequality can be relaxed somewhat, to
γ

α
− β < β

(
1− e−2αU∗

)−1

where U∗ in this context can be understood to be the
coercive voltage (proportional to the electric field strength
that causes change in remanent polarization for a given
material) for the piezoelectric stack actuator. This ensures
a physical behavior, such that the slope of ẇ has the same
sign as the slope of u̇, that is dw

du > 0.

Eq. (8) can be solved explicitly if we observe that it can
be written as

ẇ = (β − αw + γu) (u̇)+ − (β + αw − γu) (u̇)−

where (u̇)+ = u̇ and (u̇)− = 0 when u̇ ≥ 0, and (u̇)+ = 0
and (u̇)− = u̇ when u̇ < 0. The dependence on time
can then be cancelled and we are left with two linear
differential equations for the two cases. For the case u̇ ≥ 0
we find the solution of

dw = (β − αw + γu) du ⇒ dw
du

+ αw = β + γu

as

w = e−h
[∫

eh (β + γu) du+ C1

]
= e−αu

[
(αβ − γ + αγu)eαu

α2
+ C1

]
,

where h =
∫
α du = αu has been used, and which yields

w+ =
γ

α
u+

αβ − γ
α2

+ C1e−αu, (9)

w0 =
γ

α
u0 +

αβ − γ
α2

+ C1e−αu0 ,

C1 = eαu0

(
w0 −

αβ − γ
α2

− γ

α
u0

)
.

Similarly, for the case u̇ < 0 we have the solution

w− =
γ

α
u+

γ − αβ
α2

+ C2eαu, (10)

C2 = e−αu0

(
w0 −

γ − αβ
α2

− γ

α
u0

)
.

From the solutions of the equations we see that the output
of (8) can be written

w =
γ

α
u+ wh, (11)

and we observe that wh can be taken to be the solution of
the differential equation

ẇh = −β̄u̇− ᾱwh|u̇| (12)

where we choose

ᾱ = α and β̄ =
γ − αβ
α

> 0.

Equation (12) is similar to a case of the well known Dahl
solid friction model (Dahl [1968]), except for the sign of
the parameter β̄. This equation can also be solved for the
cases u̇ ≥ 0 and u̇ < 0 in a similar fashion as above, using
e.g. separation of variables. The solution for u̇ ≥ 0 is

w+
h =

1
ᾱ

(
−β̄ − C3e−ᾱu

)
=
αβ − γ
α2

− 1
α
C3e−αu, (13)

C3 = eᾱu0
(
−β̄ − ᾱwh0

)
= −αeαu0

(
w0 −

αβ − γ
α2

− γ

α
u0

)
,

and for u̇ < 0 it is

w−h =
1
ᾱ

(
β̄ − C4eᾱu

)
, (14)

C4 = e−ᾱu0
(
β̄ − ᾱwh0

)
.

We see that the solutions of (11) and (12) are the same as
the solutions of (8).

Since we know that the hysteretic behavior in a piezo-
electric actuator occurs between applied voltage u and
induced charge q, we propose to model the charge in such
an actuator as

u̇ = v
q̇h = −bv − aqh|v|
q = cu+ qh,

(15)

where

a = α , b =
γ − αβ
α

, and c =
γ

α
. (16)

By using (15) as the model for the charge in the system,
the linearized behavior of (15) should be an approximation
of (4), that is

(Ca +KaG(s))u ≈ Kqu, (17)

where G(s) is the Laplace transform of (5),

G(s) =
x1

u
(s) =

b0
s2 + a1s+ a0

, (18)

and Kq is the linearized sensitivity of (15). This should
be a good approximation as long as we are exciting the
system at frequencies well below the first resonance of the
system.

Remark If we choose a storage function such as

V =
1
2

(
cu2 +

1
b
qh

2

)
+ uqh,

the total derivative of V along the trajectories of (15) is

V̇ = cuv +
1
b
qh (−bv − aqh|v|) + uq̇h + vqh

= (cv + q̇h)u− a

b
qh

2|v| = q̇u− a

b
qh

2|v| ≤ q̇u

thus, the model (15) is passive from u to q̇.

The energy expended in a single traversal of the hysteresis
loop (see Fig. 3), if the applied voltage u cycle between a
some minimum u(τ0) = u(τ2) = um and some maximum
u(τ1) = uM during a period τ2−τ0, can be found from the
work done, which is



W = −
∫ τ2

τ0

qv dt = −
∫ τ1

τ0

qv dt−
∫ τ2

τ1

qv dt

= −
∫ uM

um

q+ du−
∫ um

uM

q− du

= −
∫ um

um

cudu︸ ︷︷ ︸
=0

−
∫ uM

um

q+
h du−

∫ um

uM

q−h du.

Since q+
h (uM ) = q−h (uM ) and q+

h (um) = q−h (um), C3 and
C4 can be expressed in terms of um and uM as

q+
h (uM ) =

1
a

(
−b− C3e−auM

)
=

1
a

(b− C4eauM ) = q−h (uM )

q+
h (um) =

1
a

(
−b− C3e−aum

)
=

1
a

(b− C4eaum) = q−h (um)

which yields
C3 = b(eaum − eauM ) csch a(uM − um)
C4 = b(e−aum − e−auM ) csch a(uM − um).

The work done can now be found to be

W = 2
b

a2

(
a (uM − um)− 2 tanh

a

2
(uM − um)

)
.

We note that the work is due to the term given in (12),
and that the new formulation of the hysteresis model (15)
yields the same work as found for the initial Coleman-
Hogdon model (8) (Coleman and Hodgdon [1986]).

For the applied voltage signal above, the linearized sensi-
tivity of (15) can be found from e.g.

Kq =

(
cuM + q+

h (uM )
)
−
(
cum + q+

h (um)
)

uM − um
, (19)

using the expressions above. It is also notable that the
parameter β in (8) is the slope of w at u = 0 when
w0 = u0 = 0, thus β and Kq should be close in value.

3. STATE OBSERVER

In this section we develop a state observer for estimating
the states of the system modeled in Section 2. The observer
is used to to suppress noise and to cancel the bias present
in the measurements. It will also mitigate the effect of the
phase lag introduced by reconstruction and anti-aliasing
filters. Utilizing state estimates should therefore improve
the performance of the controller that is proposed in
Section 4.

In the implementation we require knowledge of both dis-
placement and velocity. However, a velocity measurement
is unavailable, as we consider a system having only a
displacement and a current sensor. A measure for the
charge is obtained by integrating the current measurement
over time. We will be employing the adaptive Luenberger
observer (Ioannou and Sun [1995]), which we will tune
using the steady-state Kalman filter and a nominal model.
This should give us close to optimal state estimates in the
presence of Gaussian, zero-mean, uncorrelated, and white
noise (Simon [2006]).

The model for the system is found from (15) and (6).
In the actual implementation of the system, both the
displacement and the current measurement have unwanted
time-varying bias components, and we therefore augment
the system with three additional states in order to estimate
the bias present in the displacement and current measure-
ments. We thus have

ẋ = f(x, u) = A(t)x+Bu2,

where

A =


0 1 0 0 0 0
−ā0 −a1 b̄0 0 0 0

0 0 −a|u̇| 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =


0 0
b̄0c 0
0 −b
0 0
0 0
0 0

 ,
and

y = h(x) = Cx+Du2,

where

C =
[

1 0 0 1 0 0
0 0 1 0 1 0

]
, D =

[
0 0
c 0

]
,

x = [x1, x2, qh, x1b, qb, ib]
T and u2 = [u, u̇]T. Here x1b is

the bias present in the displacement measurement and ib
is the bias present in the current measurement. Since we
obtain a measure for the total charge in the system by
integrating the current measurement over time, we also
add a state qb to compensate for the time integral of ib.

As will be explained in Section 6, we will have parameter
estimates of b̄0, a, b, and c, but ā0 and a1 are fixed.
Given the process noise wn ∼ (0, Q), measurement noise
vn ∼ (0, R), and a nominal state matrix Ǎ, we find the
steady-state covariance P∞ from the continuous algebraic
Riccati equation

−P∞CTR−1CP∞ + ǍP∞ + P∞Ǎ
T +Q = 0.

The measurement noise is described by the variance of
the signals from the displacement and the charge mea-
surements recorded when u = 0. The Kalman gain is then
given by

K = P∞C
TR−1.

To ensure bounded state estimates, we employ a slightly
modified version of the adaptive Luenberger observer.
Having initial state estimates x̂0 = E[x0], we find the state
estimates x̂ using:

˙̂x = Â(t)x̂+ B̂(t)u+L(t)(y− ŷ) , ŷ = Cx̂+ D̂(t)u (20)
Equation (20) can be put on the form

˙̂x = (Â− LC)x̂+ (B̂ − LD̂)u+ LCx

= A∗x̂+ (B̂ − LD̂)u+ LCx

where we ensure that A∗ is a stable, time-invariant matrix.
This is done by choosing

Â− LC = A∗ = Ǎ−KC ⇒ LC = KC + Â− Ǎ
Depending on the structure of C, only some elements of Â
can be allowed to be time-varying. For the system at hand
we select

L(t) = K + T (t)
where T is a 6× 2 matrix:

T (t) =
[

0 0 0 0 0 0
0 ˆ̄b0 − ˇ̄b0 â|u̇| − ǎ|ˇ̇u| 0 0 0

]T

Here ˆ̄b0 and â are (time-varying) parameter estimates, ˇ̄b0
and ǎ are nominal (constant) values. The nominal value
for the term |u̇| is chosen to be the root-mean-square-value
of the time derivative of the control signal when using
reference feed-forward, and is denoted |ˇ̇u|.
Boundedness of (20) is now ensured. We can choose u, u̇ ∈
L∞. We know from the solution of (15) that q ∈ L∞.
From e.g. Rouths criterion, we can immediately see that
the mechanical model (6) is stable, thus x1, x2 ∈ L∞. For
the parameter estimate θ̂, we also have θ̂ ∈ L∞, as will



be shown in Section 6. Now, since A∗ is a stable, time-
invariant matrix, we have that x̂ ∈ L∞ (Ioannou and Sun
[1995]).

4. CONTROL

In this section we propose to use an ISS (input-to-state
stability) controller to achieve tracking. This controller
benefits from robustness against model parameter error
and quick convergence due to non-linear damping terms in
the control law, and it allows for a modular design, where
parameter identification can be done separately from the
controller (Krstic et al. [1995]).

Considering (6) and (15) we obtain the system
ẋ1 = x2

ẋ2 = −ā0x1 − a1x2 + b̄0cu+ b̄0qh.
(21)

If we assume no knowledge of the hysteresis model (15) for
now and consider the response of the system to be linear,
the best we can do is to use

cu+ qh = Kqu ⇒ cu ≈ Kqu (22)
in (21) and obtain

ẋ1 = x2

ẋ2 = −ā0x1 − a1x2 + β0u+ b̄0qh,
(23)

where the control gain β0 = b̄0Kq, and we consider ∆qh =
b̄0qh, due to hysteresis, a bounded disturbance input to
the system, as has been done in Su et al. [2000] and Zhou
et al. [2004]. From (13) and (14) we see that the hysteretic
behavior is bounded by ‖qh‖∞ = b

a .

4.1 Model Reduction

Considering the approximation in (17), we are assuming
that we will not excite any resonances in the positioning
stage. We also have a constraint in available bandwidth in
the hardware used for implementing the control scheme.
Applying an ISS controller to the model in (23) yields a
very high bandwidth requirement due to the non-linear
damping terms. We must therefore use a time step in the
numerical integration scheme which is much smaller than
what is implementable. By not exciting any resonances we
note that removing the high frequency dynamics from (23)
still renders a very good approximation to the observed dy-
namics, and the resulting model will reduce the bandwidth
requirement for the ISS controller.

If we find the Laplace transform of (23) as

G(s) =
β0

s2 + a1s+ ā0
,

we approximate the low frequency dynamics Glf as

Glf =
β

s+ ā′0
with ā′0 > 0, and then factor out the high frequency
dynamics Ghf , such that

G(s) = Glf (s) +Ghf (s)
and

lim
s→0

s
1
s
Glf = lim

s→0
s

1
s
Ghf ⇒

β0

ā0
=

β

ā′0
.

Ghf is found as

Ghf =
(s− ā′0)β0 − β(s2 + a1s+ ā0)

(s+ ā′0)(s2 + a1s+ ā0)
(24)

which is a proper and stable transfer function, with a high
pass characteristic,

lim
s→0

s
1
s
Ghf =

a′0β0 − βa0

a′0a0
=
β0

a0
− β

a′0
= 0.

Choosing i.e. ā′0 =
√
ā0, yields β = β0

ā0
ā′0 = β0

ā0

√
ā0 = β0√

ā0
.

The high frequency dynamics (24) can be seen as yet
another bounded disturbance at the input of the system,
∆hf ∈ L∞.

4.2 ISS Controller

Having the model
ẋ1 = −ā′0x1 + βu+ ∆qh + ∆hf = θw1 + βu+ ∆

we follow the development in Krstic et al. [1995] to find
the ISS controller. We start by defining the error variable

z1 = x1 − yr
where yr is the reference output we wish to track, and
which derivative, ẏr is known, bounded and piecewise
continuous.

Given some estimate of the parameter θ̂ = θ − θ̃ and
the control gain β̂ = β − β̃ (where θ̃ and β̃ denotes the
respective errors), and the regressor vectors w1, we find
the stabilizing function α1, and non-linear damping term
s1 as

ᾱ1 = −w1θ̂

s1 = κ1

[
|w1|2 +

(
ᾱ1 + ẏr

β̂

)2
]

α1 = ᾱ1 − β̂
sgn(β)
ς

(c1 + s1)z1

where we assume that |β| ≥ ς. Both the sign of β and a
lower bound, ς > 0, for |β| must be known. The constants
c1 and κ1 are the controller gains, and are used for tuning
the controller.

The control law can now be stated as

u =
1

β̂
(α1 + ẏr) (25)

which yields the error dynamics
ż1 = ẋ1 − ẏr = w1θ + βu− ẏr + ∆

= w1θ +
β

β̂
(α1 + ẏr)− ẏr + ∆

= w1θ +
β

β̂
(ᾱ1 + ẏr)−

|β|
ς

(c1 + s1)z1 − ẏr + ∆

= w1θ + ᾱ1 +
β̃

β̂
(ᾱ1 + ẏr)−

|β|
ς

(c1 + s1)z1 + ∆

= w1θ̃ +
β̃

β̂
(ᾱ1 + ẏr)−

|β|
ς

(c1 + s1)z1 + ∆

= w1θ̃ −
|β|
ς
κ1|w1|2z1

+
β̃

β̂
(ᾱ1 + ẏr)−

|β|
ς
κ1

(
ᾱ1 + ẏr

β̂

)2

z1 −
|β|
ς
c1z1 + ∆.

(26)

If we consider the Lyapunov function V = 1
2z1

2, we find
using (26) that the total derivative of V is



V̇ = z1ż1

= w1θ̃z1 −
|β|
ς
κ1|w1|2z1

2 +
β̃

β̂
(ᾱ1 + ẏr)z1

− |β|
ς
κ1

(
ᾱ1 + ẏr

β̂

)2

z1
2 − |β|

ς
c1z1

2 + ∆z1.

By using Young’s equality, the following upper bound on
V̇ can be found

V̇ ≤ −|β|
2ς
c1z1

2 +
ς|β̃|2

4κ1|β|
+

ς|θ̃|2

4κ1|β|
+
ς|∆|2

2c1|β|
,

which means that z = z1 is globally uniformly bounded,
if θ̃, β̃,∆ ∈ L∞. If the parameter errors, θ̃ = 0, β̃ = 0,
and the disturbance, ∆ = 0, then z1 = 0 is globally
asymptotically stable (Krstic et al. [1995]). The error, z,
is bounded by

|z| ≤ |z0|e−
|β|
ς c1t +

1
√
c1

(
‖θ̃‖2∞
2κ1

+
‖β̃‖2∞
2κ1

+
‖∆‖2∞
c1

) 1
2

.

Reducing the parameter errors and the disturbance, or by
using larger gains for c1 and κ1, tracking performance can
be increased. Increasing the gain, on the other hand, will
amplify noise present in measurements or estimates of x,
and increase the adverse effects of systematic measurement
and estimation errors.

When using the hysteresis compensation scheme presented
in the next section, we require knowledge of the time
derivative of the control signal. An approximation to u̇,
assuming ˙̂

β ≈ 0, can be found as:

ẇ1 = ẋ1 , ˙̄α1 = −ẇ1θ̂

α̇1 = ˙̄α1 − β̂
sgn(β)
ς

((c1 + s1)ż1 + ṡ1z1)

ṡ1 = κ1

[
2ẇ1w1 + 2

(
ᾱ1 + ẏr

β̂

)( ˙̄α1 + ÿr

β̂

)]
u̇ =

1

β̂
(α̇1 + ÿr)

5. HYSTERESIS COMPENSATION

Next, we propose a method for compensating for the hys-
teretic behavior of the actuator in a feed-forward fashion.
By using

u∗ =
Kq

c
u− 1

c
q̂h, (27)

where q̂h is a estimate of qh, as the new control law, and
by substituting (27) in (21), we obtain

ẋ1 = x2

ẋ2 = −ā0x1 − a1x2 + b̄0Kqu− b̄0q̂h + b̄0qh,
(28)

where the last three terms of (28) can be written as

β0u+ b̄0 (qh − q̂h) = β0u+ ∆̃qh ,

indicating that the disturbance ∆qh = b̄0qh in (23) can be
reduced to ∆̃qh < ∆qh , given a good estimate q̂h.

An open-loop observer to estimate qh can be obtained from
(15), where we now use u̇∗ as the input. The estimate q̂h
is then found as

˙̂qh = −bu̇∗ − aq̂h |u̇∗|

= −b
(
Kq

c
u̇− 1

c
˙̂qh

)
− aq̂h

∣∣∣∣Kq

c
u̇− 1

c
˙̂qh

∣∣∣∣

which we can write as:

˙̂qh =

{
Kq

−aq̂h−b
−aq̂h−b+c u̇ , u̇

∗ ≥ 0
Kq

aq̂h−b
aq̂h−b+c u̇ , u̇

∗ < 0
(29)

Equation (29) can again be solved explicitly by separation
of variables by cancelling the dependence on time. For the
case u̇∗ ≥ 0, we have

dq̂h
du

= Kq
−aq̂h − b
−aq̂h − b+ c

which solution is found as:

q̂h −
c

a
ln (aq̂h + b) = Kqu+ C5

C5 = q̂h0 −
c

a
ln (aq̂h0 + b)−Kqu0

This implicit equation can be solved explicitly for q̂h by
using the Lambert W function (Corless et al. [1996]),
denoted W (·):

q̂h = − c
a
W

(
−1
c

e−
(
aKqu

c +
aC1
c + b

c

))
− b

a
(30)

Similarly, for the case u̇∗ < 0 we have

q̂h +
c

a
ln (−aq̂h + b) = Kqu+ C6,

C6 = q̂h0 +
c

a
ln (−aq̂h0 + b)−Kqu0,

and the explicit solution is found as

q̂h =
c

a
W

(
−1
c

e
(
aKqu

c +
aC2
c −

b
c

))
+
b

a
. (31)

Proposition 1. The solution of (29), q̂h, is bounded.

Proof. Differentiating (30) or (31) by u yields dq̂h
du < 0,

thus u̇ ≥ 0 ⇒ ˙̂qh ≤ 0, and u̇ ≤ 0 ⇒ ˙̂qh ≥ 0. Therefore
u̇∗ ≥ 0⇒ u̇ ≥ 0 and u̇∗ < 0⇒ u̇ < 0. Thus ‖q̂h‖∞ = b

a .

6. PARAMETER IDENTIFICATION

6.1 Model Parameters from Frequency Response Data

The parameters for the models (4), (5), and (6), were ini-
tially identified using frequency response data and the Sys-
tem Identification Toolbox in MATLAB. The frequency
response data was collected using a SRS SR780 Dynamic
Signal Analyzer. The identified parameters are presented
in Table 1.

Table 1. Identified parameters for the models
(4), (5), and (6).

Parameter Value Unit

b0 2.07 m/(s2 V)

b̄0 6.24×106 m/(s2 C)

a0 1.08×108 1/s2

ā0 1.17×108 1/s2

a1 491 1/s

Ca 332×10−9 F

Ka 1.36 N/V

6.2 Online Parameter Identification

In order to increase tracking performance, we identify
the model parameters online using the modified least-
squares adaptive law with forgetting factor, as described
in Ioannou and Sun [1995]. This method provides good



Table 2. Modified least-squares adaptive law
with forgetting factor.

Parametric model z = θTΦ

Estimation model ẑ = θ̂TΦ

Estimation error ε = z−ẑ
m2

Adaptive law
˙̂
θ = PεΦ

Ṗ =

{
λP − PΦΦTP

m2 , if ‖P‖ ≤ R0

0 otherwise

P (0) = P0

parameter estimates in the presence of sensor noise. The
method is summarized in Table 2.

Here z is the output of the parametric model, θ is the
parameter vector, and Φ is the regressor vector. The out-
put of the parametric model given the vector of estimated
parameters, θ̂, is denoted ẑ. P is the covariance matrix,
and the initial covariance matrix must be symmetric and
positive definite, P (0) = P0 = PT

0 > 0. To avoid that P
becomes arbitrarily small in some directions in the space
spanned by the parameter estimates, thus making the
adaptation slow, the forgetting factor λ is used, but this
can cause P to grow without bound, thus ‖P‖ is bounded
by R0. The initial covariance matrix should therefore also
satisfy ‖P (0)‖ ≤ R0. Normalization is achieved using the
signal m2, which can be taken to be

m2 = 1 + ns
2 , ns

2 = ΦTPΦ.

The normalized least-squares algorithm have the proper-
ties ε, εns, θ̂,

˙̂
θ, P ∈ L∞. Thus the parameter estimate error

θ̃ is bounded, which is required by the ISS controller.

6.3 Hysteresis Model Parameters

Setting w = q in the hysteresis model in (8), we have
q̇ = βu̇− αq|u̇|+ γ|u̇|u,

and we see that by choosing
θ = (α, β, γ)T

Φ = (−w|u̇|, u̇, |u̇|u)T

the model can be put in the parametric form z = θTΦ,
where z = q̇. Having a measurement of the total current
flowing in the piezoelectric actuator, z is a known signal.
The charge q can then be found by integrating q̇ over time,
and since the control input u and its derivative u̇ is known,
the signals in Φ can be generated.

Identified parameters for the hysteresis model are given in
Table 3. Given the parameter estimates α̂, β̂, and γ̂, the
parameter estimates â, b̂, and ĉ for (15), are found from
(16). Figure 3 presents the measured response compared
to the computed response of the model (15). As can be
seen, the model with the identified parameters provide a
very good fit to the actual behavior.

Table 3. Identified parameters for (8).

Parameter Value

α 3.96×10−2

β 4.32×10−1

γ 2.06×10−2

6.4 Other Model Parameters

In the implementation of the control law (25), identifying
the parameters ā′0 and β should provide better tracking.
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Fig. 3. Experiment: Applied voltage vs. measured charge
and applied voltage vs. model with identified param-
eters.

For the hysteresis compensation, given by (27) and (29),
we find the parameters a, b, and c from the scheme in
Section 6.3, but in addition we also need an estimate of the
parameter Kq. For the state observer, we require estimates
the parameters b̄0, ā0, a1, a, b, and c.

We expect the mass, damping, and stiffness of the system
to be constant, and since we are exiting the system at
frequencies well below the first resonance frequency, we
decided to fix the parameters ā0 and a1, in order to reduce
the complexity of the parameter identification scheme.

To obtain an estimate of Kq, we could use (19), but this
requires knowledge of uM and um, for which there is
no obvious solution for an arbitrary input signal u. We
therefore estimate Kq by using

q = Kqu.

With z = q, the equation is put on parametric form by
choosing

θ = Kq

Φ = u.

To obtain estimates of β and b̄0, we note that β = b̄0Kq√
ā0

,
given that ā′0 =

√
ā0, which is fixed. Thus we only need to

estimate b̄0.

Putting (6) on the form

z = x1 =
b̄0

s2 + a1s+ ā0
q = b̄0W (s)q,

we find the parametric form by choosing

θ = b̄0
Φ = W (s)q.

7. EXPERIMENTS

The performance of the hysteresis compensation, given by
(27) and (29), and the backstepping control law (25) using
state estimates from the state observer (20), was assessed
by experiments.



7.1 Description of the Experimental System

The nanopositioning device utilized is a serial kinematic
device with one moving platform suspended by leaf flex-
ures and actuated by a 10 mm Noliac SCMAP07 stack
actuator. It is a simplified design based on the device
described in Leang and Fleming [2009]. Displacement was
measured using a SIOS Meßtechnik SP120 interferometer
(0.24 µm/V). The actuator was driven using a Piezodrive
PDL200 linear voltage amplifier (20 V/V). Current was
measured using an inverting op-amp circuit with a Burr-
Brown OPA2111 and a 10 kΩ resistor, thus having a
sensitivity of −0.1 µA/V. Everything was implemented on
a dSPACE DS1103 harware-in-the-loop board.

7.2 Results

The first experiment is presented in Fig. 4. The reference
is just feed forwarded, using

u =
1
β0
yr and u̇ =

1
β0
ẏr,

where β0 = b̄0Kq. This provides an upper bound for the
error. The second experiment is presented in Fig. 5 and
6, where we have reference feed forward and hysteresis
compensation. As can be seen, the hysteresis compensation
cancels the effect of the hysteresis well, and the root-mean-
square (RMS) error is reduced by more than an order of
magnitude. Next, the ISS controller is used. The gains
of the controller were set to c1 = 20000 and κ1 = 10.
The resulting time-series is presented in Fig. 7. The ISS
controller with these gains provides better tracking, but
some hysteresis is still left. Lastly, the ISS controller
was used in conjunction with the hysteresis compensation
scheme, and the result is presented in Fig. 8. The error
is seen to be marginally worse than when using feed
forward and hysteresis compensation. Experience with the
implemented system showed that the ISS controller with
hysteresis compensation and feed forward with hysteresis
compensation yielded about the same error over time when
the parameter estimates had converged. In general the
scheme using the ISS controller yielded a smaller error
when some parameter estimation error was present.

The RMS error obtained from the different experiments
are summarized in Table 4.

Table 4. RMS error summary.

Feed forward: 2.43×10−2 µm

Feed forward and hysteresis compensation: 1.53×10−3 µm

ISS controller: 5.49×10−3 µm

ISS controller and hysteresis compensation: 1.55×10−3 µm

8. CONCLUSIONS

The implementation of the proposed hysteresis compen-
sation scheme presented in this paper has been shown
through experiment to reduce the hysteretic behavior of
a piezoelectric actuator significantly. The scheme is sim-
ple to implement, and since the parameters used in the
scheme are identified online, the method will provide good
performance even if the parameters change, e.g. due to
depolarization of material, or aging.

The proposed adaptive backstepping controller using esti-
mated states, also in conjunction with the hysteresis com-
pensation scheme, was shown through experiments to be a
feasible solution for providing tracking control. Using the
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Fig. 4. Experiment: Feed forward.
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Fig. 5. Experiment: Feed forward and hysteresis compen-
sation.
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with hysteresis compensation.
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Fig. 7. Experiment: ISS controller.
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Fig. 8. Experiment: ISS controller and hysteresis compen-
sation.

controller with estimated states is beneficial when noise is
present in the measurements. The presence of anti-aliasing
and reconstruction filters degrade performance, but using
the state observer mitigates this effect. Being an adaptive
controller, changes in the parameters of the system can be
accounted for.

Using the backstepping controller in conjunction with the
hysteresis compensation scheme when parameter estimates
had converged provided no additional reduction in er-
ror over the case when using reference feed forward and
hysteresis compensation. The controller improved perfor-
mance when some parameter estimation error was present.

9. FURTHER WORK

During work on the actual implementation, some issues
has come to light that should be given more consideration.

When using controller with state estimates where bias
components are removed, absolute positioning with re-
spect to an initial position reference is not possible. That
is, low frequency drift due to other factors than drift
introduced by the employed measurement technique is not
observable.

The hysteresis compensation scheme requires knowledge of
the time derivative of the control signal. When using the
ISS controller, generating this signal without resorting to
numeric differentiation requires a good estimate of the ve-
locity of the system. Having poor parameter estimates, e.g.
by introducing an error of 1% in the parameter estimates,
typically lead to poor velocity estimation, which again
produced a poor reproduction of the time derivative of the
control signal. This degraded the robustness of the control
scheme, which resulted in poor tracking performance.

It should also be mentioned that parameter identification
with projection should be used to make absolutely sure
that the bounds for the parameters in the hysteresis model
(8) and the control gain estimate β̂ in the control law (25)
are not violated.
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